Open Access
EPJ Web of Conferences
Volume 26, 2012
DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01012
Number of page(s) 6
Section Experimental Techniques
Published online 31 August 2012
  1. Duncan, J., 1999. Dynamic mechanical analysis techniques and complex modulus, in Mechanical Properties and Testing of Polymers, ed. G.M. Swallowe, pp. 43-48, publ. Dordrecht, The Netherlands, Kluwer. [CrossRef]
  2. Garret, S. L., 1990. Resonant acoustic determination of elastic moduli. J. Acoust. Soc. Am. 88(1), July, 210-221 [CrossRef]
  3. Guo, Q., Brown, D. A., 2000. Determination of the dynamic elastic moduli and internal friction using thin rods. J. Acoust. Soc. Am. 108, 167-174. [CrossRef] [PubMed]
  4. Madigowski, W. M. Lee, G. F., 1983. Improved resonance technique for materials characterization. J. Acou. Soc. Am. 73(3), 1374-1377 [CrossRef]
  5. Pintelon, R., Guillaume P. Vanlanduit S., De Belder K., Rolain Y., 2004 Identification of Young’s modulus from broadband modal analysis experiments. Mechanical Systems and Signal Processing 18, 2004, 699-726. [CrossRef]
  6. Blanc, R. H.">, 1971. Détermination de l’équation de comportement des corps visco-élastiques linéaires par une méthode d’impulsion. Ph. D. Thesis, Université d’Aix-Marseille, published in part in Problèmes de la Rhéologie (W.K. Nowacki, editor), 65-85. IPPT PAN, Warsaw, 1973.
  7. Blanc, R.H., 1993. Transient wave propagation methods for determining the viscoelastic properties of solids. Journal of Applied Mechanics, 60, 763-768. [CrossRef]
  8. Lundberg, B., Blanc, R.H., 1988. Determination of mechanical material properties from the two-point response of an impacted linearly viscoelastic rod specimen. J. Sound Vib. 137, 483–493.
  9. Lundberg, B., Ödeen, S., 1993-. In situ determination of the complex modulus from strain measurements on an impacted structure. J. Sound Vibration 167, 413-419. [CrossRef]
  10. Hillström, L., Mossberg, M., Lundberg, B., 2000. Identification of complex modulus from measured strains on an axially impacted bar using least squares. J. Sound Vib. 230, 689–707.
  11. Othman, R., 2002. Extension du champ d’application du système des barres de Hopkinson aux essais à moyennes vitesses de déformation. Ph. D. Thesis, Ecole Polytechnique, France.
  12. Mousavi, S., Nicolas, D.F., Lundberg, B., 2004. Indetification of complex moduli and Poisson’s ratio from measured strains on an impacted bar. J. Sound Vibration 277, 971-986. [CrossRef]
  13. Zhao, H., Gary, G., 1995. A three dimensional analytical solution of longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques. J. Mech. Phys. Solids 43, 1335–1348. [CrossRef]
  14. Landau, L., Lifchitz, E., 1960. Electrodynamics of continuous media. Pergamon Press, Oxford, New York.
  15. Landau, L., Lifchitz, E., 1980. Statistical Physics. Pergamon Press, Oxford, New York.
  16. Golden, J., 2005. A proposal concerning the physical rate of dissipation in materials with memory. Quarterly Appl. Math., 63, 117-155.
  17. Hanyga, A., 2005. Physically acceptable viscoelastic models. In Trends in Applications of Mathematics to Mechanics, Y. Wang and K. Hutter eds. Shaker Verlag, Aachen, 2005. See also
  18. Bouleau, N., 1999, Visco-élasticité et Processus de Levy, Potential Analysis, 11, 289-302.
  19. Krein, M., Nudelman, A., 1998. An interpolation approach in the class of Stieltjes functions and its connection with other problems. Integr. Equ. Oper. Theory 30, 251-278. [CrossRef]
  20. Gu, G., Xiong, D., Zhou, K., 1993. Identification in using Pick’s interpolation. Systems & Control Letters 20, 263-272. [CrossRef]
  21. Kolsky, H., 1963. Stress Waves in Solids, Clarendon Press, Oxford.
  22. Othman, R., Blanc, R. H., Bussac, M. N., Collet, P., Gary, G., 2002. Identification de la relation de la dispersion dans les barres. C. R. Mécanique, 330, 849-855. [CrossRef]