Open Access
EPJ Web of Conferences
Volume 33, 2012
2nd European Energy Conference
Article Number 01009
Number of page(s) 6
Section Systems Aspects
Published online 02 October 2012
  1. H. Lund, B.V. Mathiesen, Energy system analysis of 100% renewable energy systems: The case of Denmark in years 2030 and 2050, Energy, 34 (2009), (2009) 524–531. [CrossRef]
  2. D. Tonini, T. Astrup, Life-cycle assessment of biomass-based energy systems: a case study for Denmark Appl. Energy (accepted) (2012).
  3. B.V. Mathiesen, H. Lund, K. Karlsson, 100% Renewable energy systems, climate mitigation and economic growth, Appl. Energy 88 (2011) 488–501. [CrossRef]
  4. B.V. Mathiesen, H. Lund, P. Noergaard, Integrated transport and renewable energy systems, Utilities Policy 16 (2008) 107–116. [CrossRef]
  5. B.V. Mathiesen, H. Lund, F.K. Hvelplund, N.S. Bentsen, D. Tonini, P.E. Morthorst, H. Wenzel, T. Astrup, N.I. Meyer, M. Münster, P.A. Østergaard, M.P. Nielsen, E. Schaltz, J.R. Pillai, L. Hamelin, C. Felby, K. Heussen, P. Karnøe, L. Pade, F.M. Andersen, K. Hansen, CEESA 100% Renewable Energy Scenarios towards 2050, Aalborg University. Available from: (accessed December 2011) (2011).
  6. H. Wenzel, Breaking the Biomass Bottleneck of the Fossil Free Society, Concito, Frederiksberg, Denmark ID: 302 (2010).
  7. T.D. Searchinger, Biofuels and the need for additional carbon, Environmental Research Letters, 5 (2010) 024007–024007. [CrossRef]
  8. R. Edwards, D. Mulligan, L. Marelli, Indirect land use change from increased biofuels demand. Comparison of models and results for marinal biofuels production from different feedstocks, EUR 24485 (2010).
  9. Searchinger T., Heimlich R., Houghton R.A., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D., Yu T.-H., Yu T.-H., Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change, Science, 319 (2008), 1238–1240. [CrossRef] [PubMed]
  10. C.V. Beale, S.P. Long, Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus x giganteus and Spartina cynosuroides, Biomass & bioenergy, 12 (1997) 419–428.
  11. L. Hamelin, U. Joergensen, B.M. Petersen, J.E. Olesen, H. Wenzel, Modelling the environmental consequences of direct land use changes from energy crops in Denmark: a consequential life cycle inventory, GCB Bioenergy (2012).
  12. ISO 14040, Environmental Management-Life Cycle Assessment-Principles and Framework, 2nd ed. (2006).
  13. ISO 14040, Environmental Management-Life Cycle Assessment-Requirements and Guidelines, 1st ed. (2006).
  14. L. Hamelin, M. Wesnaes, H. Wenzel, B.M. Petersen, Environmental Consequences of Future Biogas Technologies Based on Separated Slurry, in Environ. Sci. Technol. 45 (2011) 5869–5877. [CrossRef] [PubMed]
  15. M. Hauschild, J. Potting, Spatial differentiation in Life Cycle impact assessment – The EDIP2003 methodology Environmental News No. 80 (2005).
  16. H. Wenzel, M.Z. Hauschild, L. Alting, Environmental Assessment of Products, Volume 1 (1997) [CrossRef]
  17. Pre’ Consultants, Simapro 7.1, (accessed 2009).
  18. B. Weidema, N. Frees, A.M. Nielsen, Marginal production technologies for Life Cycle Inventories, Int J Life Cycle Assess 4 (1999) 48–56. [CrossRef]
  19. J.H. Schmidt, System delimitation in agricultural consequential LCA – Outline of methodology and illustrative case study of wheat in Denmark, 13 (2008), 350–364.
  20. R. Dalgaard, J. Schmidt H. N. Halberg, P. Christensen, M. Thrane, W. Pengue A., LCA of Soybean Meal, International Journal of Life Cycle Assessment 13 (2008) 240–254. [CrossRef]
  21. J.H. Kloeverpris, Consequential life cycle inventory modelling of land use induced by crop consumption, PhD thesis, Technical University of Denmark (DTU), Lyngby, Denmark. (2008).
  22. R. Edwards, S. Szekeres, F. Neuwahl, V. Mahieu, Biofuels in the European context: facts and uncertainties, (2008).
  23. W. Tyner, F. Taheripour, Q. Zhuang, D. Birur, U. Baldos, Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis, (2010).
  24. D. Laborde, Assessing the Land Use Change Consequences of European Biofuel Policies, International Food Policy Institute, Washington, DC, (USA) (2011).
  25. R. Müller-Wenk, R. Müller-Wenk, M. Brandao, Climatic impact of land use in LCA – carbon transfers between vegetation/soil and air, The International Journal of Life Cycle Assessment 15 (2010) 172–182. [CrossRef]
  26. Danish Ministry of Food, Agriculture and Fisheries, Plantedirektoratets bekendtgoerelse nr. 786 af 22. juli 2008 om jordbrugets anvendelse af goedning og om plantedaekke i planteperiode 2008/2009, (2008).
  27. Danish Ministry of Food, Agriculture and Fisheries, The Danish Plant Directorate. Vejledning om goedsknings-og harmoniregler. Planperioden 1.august 2009 til 31.juli 2010, (2009).
  28. H. Uellendahl, G. Wang, H.B. Moller, U. Jorgensen, I.V. Skiadas, H.N. Gavala, B.K. Ahring, Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation, Water Science and Technology 58 (2008) 1841–1847. [CrossRef]
  29. L. Hamelin, M. Wesnæs, H. Wenzel, B.M. Petersen, Life cycle assessment of biogas from separated slurry, Environmental project 1329 (2010)
  30. Fichtner, The Viability of Advanced Thermal Treatment of MSW in the UK, Fichtner Consulting Engineers Ltd (2004).
  31. Danish Energy Agency (DEA), Technology data for energy plants, Copenhagen (Denmark): Energistyrelsen (Danish Energy agency) (2010).
  32. N. Jungbluth, M. Chudacoff, A. Dauriat, F. Dinkel, G. Doka, E.M. Faist, E. Gnansounou, N. Kljun, K. Schleiss, M. Spielmann, C. Stettler, J. Sutter, Life Cycle Inventories of Bioenergy, Swiss Centre for Life Cycle Inventories, ESU-services, Uster, CH Ecoinvent report No 17 (2007).
  33. DONG energy, Avedoerevaerket – Groent regnskab 2008, DONG energy; Hvidovre, Denmark ROS 432-0007 (2009).
  34. M. Nielsen, O.-. Nielsen, M. Thomsen, Emissions from decentralised CHP plants 2007, Energinet. dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. (2010).
  35. P. Kofman, R. Spinelli, Storage and handling of willow from SRC, ELSAMPROJEKT 87-986376-2-2 (1997).
  36. I.R. Emery, N.S. Mosier, The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuel production, Biomass & bioenergy, available on-line (2012). [PubMed]
  37. IPCC, Chapter 11: N2O emissions from managed soils and CO2 emissions from lime and urea application, in: Anonymous 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006.
  38. B. Amon, V. Kryvoruchko, V. Amon, S. Zechmeister-Boltenstern, Zechmeister-Boltenstern, Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment, Agriculture, ecosystems & environment 112 (2006) 153–162. [CrossRef]
  39. J. Clemens, M. Trimborn, P. Weiland, B. Amon, Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry, Agriculture, ecosystems & environment 112 (2006) 171–177. [CrossRef]
  40. T. Matsunaka, T. Sawamoto, H. Ishimura, K. Takakura, A. Takekawa, Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland, Int. Congr. Ser. 1293 (2006) 242–252. [CrossRef]
  41. S. Bruun, T.L. Hansen, T.H. Christensen, J. Magid, L.S. Jensen, Application of processed organic municipal solid waste on agricultural land – A scenario analysis, Environ Model Assess 11 (2006) 251–265. [CrossRef]