Open Access
EPJ Web of Conferences
Volume 55, 2013
SOS 2012 – IN2P3 School of Statistics
Article Number 02002
Number of page(s) 21
Section Multivariate Analysis Tools
Published online 01 July 2013
  1. C. Andrieu, E. Moulines, and P. Priouret. Stability of stochastic approximation under verifiable conditions. SIAM Journal on Control and Optimization, 44:283–312, 2005. [CrossRef] [MathSciNet]
  2. C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing, 18:343–373, 2008. [CrossRef]
  3. Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society B, 2010.
  4. Y. Atchadé, G. Fort, E. Moulines, and P. Priouret. Bayesian Time Series Models, chapter Adaptive Markov chain Monte Carlo: Theory and Methods, pages 33–53. Cambridge Univ. Press, 2011.
  5. R. Bardenet. Towards adaptive learning and inference – Applications to hyperparameter tuning and astroparticle physics. PhD thesis, Université Paris-Sud, 2012.
  6. R. Bardenet and B. Kégl. An adaptive Monte Carlo Markov chain algorithm for inference from mixture signals. In Proceedings of ACAT’11, Journal of Physics: Conference series, 2012.
  7. A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo in practice. Springer, 2001. [CrossRef]
  8. H. J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, and Werner K. Parton-based Gribov-Regge theory. Physics Reports, 2001.
  9. P. Fearnhead and D. Prangle. Constructing summary statistics for approximate Bayesian computation: semi-automatic ABC. Journal of the Royal Statistical Society B, 2012.
  10. J. M. Flegal and G. L. Jones. Batch means and spectral variance estimators in Markov chain Monte Carlo. Annals of Statistics, 38(2):1034–1070, 2010. [CrossRef]
  11. W.R. Gilks, S. Richardson, and D. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman & Hall, 1996.
  12. P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711–732, 1995. [CrossRef] [MathSciNet]
  13. G. R. Grimmett and D. R. Stirzaker. Probability and random processes. Oxford science publications, second edition, 1992.
  14. H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, 7:223–242, 2001. [CrossRef] [MathSciNet]
  15. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw. CORSIKA: A Monte Carlo code to simulate extensive air showers. Technical report, Forschungszentrum Karlsruhe, 1998.
  16. S. F. Jarner and E. Hansen. Geometric ergodicity of Metropolis algorithms. Stochastic processes and their applications, 341–361, 1998.
  17. R. M. Neal. Handbook of Markov Chain Monte Carlo, chapter MCMC using Hamiltonian dynamics. Chapman & Hall / CRC Press, 2010.
  18. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New York, 2004. [CrossRef]
  19. G. Roberts, A. Gelman, and W. Gilks. Weak convergence of optimal scaling of random walk Metropolis algorithms. The Annals of Applied Probability, 7:110–120, 1997. [CrossRef]
  20. G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science, 16:351–367, 2001. [CrossRef] [MathSciNet]
  21. A. Roodaki. Signal decompositions using trans-dimensional Bayesian methods. PhD thesis, Supélec, 2012.
  22. D. S. Sivia and J. Skilling. Data Analysis: A Bayesian Tutorial. Oxford University press, second edition, 2006.
  23. A.D. Sokal. Monte Carlo methods in statistical mechanics: Foundations and new algorithms, 1996. Lecture notes at the Cargèse summer school.
  24. D. Wraith, M. Kilbinger, K. Benabed, O. Cappé, J.-F. Cardoso, G. Fort, S. Prunet, and C. P. Robert. Estimation of cosmological parameters using adaptive importance sampling. Phys. Rev. D, 80(2), 2009. [NASA ADS] [CrossRef]