Open Access
EPJ Web of Conferences
Volume 56, 2013
International Workshop NUCPERF 2012: Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plant and Radioactive Waste Storage and Disposal (RILEM Event TC 226-CNM and EFC Event 351)
Article Number 02004
Number of page(s) 10
Section Session 2: Physical, Chemical and Mechanical Behavior: Coupled Chemical and Mechanical Effect
Published online 11 July 2013
  1. A. Zagorodni, Ion exchange materials, first edition, Properties and Applications, 2007.
  2. F. Helfferich, Ion exchange, McGraw-Hill, 1962.
  3. J.M. Prausnitz, R.N. Lichtenthaler, Gomes de Azeved, Molecular thermodynamics of fluidphase equilibria, Third Edition, 1999.
  4. F. Gressier, Etude de la rétention des radionucléides dans les résines échangeuses d’ions des circuits d’une centrale nucléaire à eau sous pression, Manuscrit de thèse, Ecole des Mines de paris, 2008.
  5. H. Vink, Thermodynamics of ion exchange equilibria in polyelectrolyte systems, J. Chem. Soc. 81 (1985) 1677‑1684.
  6. H.P. Gregor, Gibbs-Donnan equilibria in ion exchange resin systems, Journal of the American Chemical Society. 73 (1951) 642–650. [CrossRef]
  7. G. Maurer, J.M. Prausnitz, Thermodynamics of phase equilibrium for systems containing gels, Fluid phase equilibria. 115 (1996) 113–133. [CrossRef]
  8. V. Soldatov, Application of basic concepts of chemical thermodynamics to ion exchange equilibria, Reactive and Functional Polymers. 27 (1995) 95–106. [CrossRef]
  9. A. de Lucas, J.L. Valverde, M.C. Romero, J. Gómez, J.F. Rodríguez, The ion exchange equilibria of Na+/K+ in nonaqueous and mixed solvents on a strong acid cation exchanger, Chemical engineering science. 57 (2002) 1943–1954. [CrossRef]
  10. A. Gantman, A mathematical model for mixed-diffusion dynamics of ion-exchange sorption, Russian journal of physical chemistry. 69 (1995) 1652‑1655.
  11. E. Hogfeldt, Ten years experience of a simple three-parameter model to fit ion exchange data, Reactive polymers. 11 (1989) 199–219. [CrossRef]
  12. M. Matsuda, T. Nishi, K. Chino, M. Kikuchi, Solidification of spent ion exchange resin using new cementitious material,(I), Journal of Nuclear Science and Technology. 29 (1992) 883–889. [CrossRef]
  13. D. Chartier, Cimentation de résines échangeuses d’ions : Etude Bibliographique DTCD/SPDE/2008/16, CEA, 2008.
  14. B. Bary, Simplified coupled chemo-mechanical modeling of cement pastes behavior subjected to combined leaching and external sulfate attack, Int. J. Numer. Anal. Meth. Geomech. 32 (2008) 1791‑1816. [CrossRef]
  15. E. Lemarchand, L. Dormieux, F.-J. Ulm, Micromechanics investigation of expansive reactions in chemoelastic concrete, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 363 (2005) 2581‑2602.
  16. E. Stora, Multi-scale modeling and simulations of the chemo-mechanical behavior of degraded cement-based materials, Manuscrit de thèse, Université Paris-Est, 2007.
  17. E. Stora, Q.C. He, B. Bary, Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes, Cement and concrete research. 36 (2006) 1330–1344.
  18. B. Bary, Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes, International Journal for Numerical and Analytical Methods in Geomechanics. 35 (2011) 1560‑1586. [CrossRef]
  19. Q.S. Zheng, D.X. Du, An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution, Journal of the Mechanics and Physics of Solids. 49 (2001) 2765–2788. [CrossRef]
  20. Rohm&Haas, Data Sheet AMBERLITE IR120H, 2008.
  21. F. Dardel, Echange d’ions : Principe de base, Techniques de l’ingénieur, 2000.
  22. G.M. Wilson, Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing, Journal of the American Chemical Society. 86 (1964) 127–130. [CrossRef]
  23. B.S. Vo, D.C. Shallcross, Modeling Solution Phase Behavior in Multicomponent Ion Exchange Equilibria Involving H + , Na+ , K+ , Mg2+ , and Ca2+ Ions, Journal of Chemical & Engineering Data. 50 (2005) 1995‑2002. [CrossRef]
  24. J.L. Valverde, A. de Lucas, M. González, J.F. Rodríguez, Equilibrium data for the exchangeof Cu2+, Cd2+, and Zn2+ ions for H+ on the cationic exchanger Amberlite IR-120, Journal of Chemical & Engineering Data. 47 (2002) 613‑617. [CrossRef]
  25. J.L. Valverde, A. de Lucas, M. González, J.F. Rodríguez, Ion-exchange equilibria of Cu2+, Cd2+, Zn2+, and Na+ ions on the cationic exchanger Amberlite IR-120, Journal of Chemical & Engineering Data. 46 (2001) 1404‑1409. [CrossRef]
  26. A. De Lucas, J. Zarca, P. Ca, Ion-exchange equilibrium of Ca2+, Mg2+, K+, Na+, and H+ ions on Amberlite IR-120: experimental determination and theoretical prediction of the ternary and quaternary equilibrium data, Separation science and technology. 27 (1992) 823–841.
  27. E. Lafond, Etude de l’évolution chimique des résines échangeuses d’ions en milieu cimentaire - Influence sur l’hydratation du liant, LP2C Marcoule, 2012.
  28. G. Dvorak, Y. Benveniste, On Transformation Strains and Uniform Fields in Multiphase Elastic Media, 437 (1992) 291‑310.