Open Access
EPJ Web of Conferences
Volume 68, 2014
ICASCE 2013 – International Conference on Advances Science and Contemporary Engineering
Article Number 00005
Number of page(s) 6
Published online 28 March 2014
  1. Amorim. R.C. Constrained Intelligent KMeans:Improving Results with Limited Previous Knowledge. The Second International Conf. on Adv Eng Computing and Applications in Sciences (2008)
  2. Ahmad.N.H., Othman.I.R and Deni.M. Hierarchical Cluster Approach for Regionalization of Peninsular Malaysia Based on the Precipitation Amount. J. Phys.: Conf. Ser. 423 012018 (2013) [CrossRef]
  3. Brock. G., Pihur.V., Datta.S and Datta S. clValid: An R Package for Cluster Validation. Journal for Stastical Software. V 25 Issue 4 (2008)
  4. Han.J, Kamber.M, and Tung. A. K. H. Geographic Data Mining and Knowledge Discovery, chapter Spatial Clustering Methods in Data Mining: A Survey, pages 1–29. Taylor and Francis, (2001)
  5. Han.J., Kamber.M and Pei.J. Data Mining Concept and Techniques (Third Edition). Morgan Kaufmann-Elsevier (2012)
  6. Hartigan.J.A and Wong.M.A. A K-Means Clustering Algorithm-JSTOR J of the Royal Statistical Society. Series C (Applied Statistics), V 28, No. 1 (1979), pp. 100–108 (1975)
  7. Irwansyah. E. Bulding Damage Assessment Using Remote Sensing, Aerial Photograph and GIS Data: Case Study in Banda Aceh after Sumatra Earthquake 2004. Proc The 11th Seminar on Intelligent Tech and Its App-SITIA 2010 V 11 pp.57 (2010)
  8. Irwansyah.E and Hartati.S. Zonasi Daerah Bahaya Kerusakan Bangunan Akibat Gempa Menggunakan Algoritma SOM Dan Algoritma Kriging (in Bahasa). Seminar Nasional Teknologi Informasi (2012).
  9. Irwansyah E, Winarko E, Z.E Rashid and R.D Bekti. Earthquake Hazard Zonation Using Peak Ground Acceleration (PGA) Approach J. Phys.: Conf. Ser. 423 012018 (2013) [CrossRef]
  10. Jain. A.K. Data Clustering: 50 Years Beyond K-Means. Pattern Recognition Letters, 2009 [PubMed]
  11. Kumar.P and Wasan S.K.. IJCSNS Int J of Comp Science and Network Security, V 10 No.4 (2010)
  12. Likas,A., Vlassis, M. & Verbeek, J. The global k-means clustering algorithm, Pattern Recognition, V 36, p451–461 (2003) [CrossRef]
  13. MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proc. of 5th Berkley Symposium on Mathematical Statistics and Probability, Volume I: Statistics, pp. 281–297 (1967)
  14. Mirkin, B., Clustering for Data Mining: A Data Discovery Approach, Chapman and Hall/CRC, Boca Raton Fl. USA (2005)
  15. Pelleg.D and Moore.A. X-means: Extending K-means with Efficient Estimation of the Number of Clusters, ICML 2000 (2000)
  16. Sengara. I.W. Seismic Hazard and Microzonation For A District In Banda Aceh City Post 2004 Great Sumatra Earthquake. The 14th World Conf on Earthquake Eng (2008)
  17. Steinbach. M., Karypis. G & Kumar.V. A Comparison of Document Clustering Techniques (2000)
  18. Tangkitjaroenmongkol.R,Kaittisin.S & Ongwattanakul.S. Inbound Logistics Cassava Starch Planning With Application of GIS and K-means Clustering Methods in Thailand. 8th Intl Joint Conf on Comp Science and Soft Eng –JCSSE (2011)
  19. Tesfamariam.S and Saatcioglu.M. Seismic Vulnerability Assessment of Reinforced Concrete Buildings Using Hierarchical Fuzzy Rule Base Modeling. Earthquake Spectra. V 26 No 1 p235–256 (2010) [CrossRef]
  20. USGS. Historic World Earthquakes Last Mod: Nov 01 (2012)
  21. Williams G. Data Mining With Rattle and R: The Art of Excavating Data for Knowledge Discovery. Springer (2011)
  22. Zhang Y., Mao J. and Xiong Z. An efficient Clustering algorithm, In Proceedings of Second International Conference on Machine Learning and Cybernetics (2003)