Open Access
EPJ Web of Conferences
Volume 95, 2015
3rd International Conference on New Frontiers in Physics
Article Number 03011
Number of page(s) 11
Section Plenary
Published online 29 May 2015
  1. M. Genovese, Research on hidden variable theories: a review of recent progresses, Phys. Rep. 413, 319 (2005) [CrossRef] [MathSciNet]
  2. G. Brida, M. Genovese, and I. Ruo Berchera, Experimental realization of sub-shot-noise quantum imaging, Nature Phot. 4, 227 (2010). [CrossRef]
  3. G. Brida, M. Genovese, A. Meda, and I. Ruo Berchera, Experimental quantum imaging exploiting multimode spatial correlation of twin beams, Phys. Rev. A 83, 033811 (2011). [CrossRef]
  4. E. Lopaeva, I. Ruo Berchera, I. Degiovanni, S. Olivares, G. Brida, and M. Genovese, Experimental realisation of quantum illumination, Phys. Rev. Lett. 110, 153603 (2013). [CrossRef] [PubMed]
  5. E. Lopaeva, I. Ruo Berchera, S. Olivares, G. Brida, I.P. Degiovanni, and M. Genovese, A detailed description of the experimental realization of a quantum illumination protocol, Phys. Scr. T 160, 014026 (2014). [CrossRef]
  6. S.-H. Tan, B.I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J.H. Shapiro Quantum illumination with gaussian states, Phys. Rev. Lett. 101, 253601 (2008). [CrossRef] [PubMed]
  7. S. Ragy, I. Ruo Berchera, I.P. Degiovanni, S. Olivares, M.G.A. Paris, G. Adesso, and M. Genovese, Quantifying the source of enhancement in experimental continuous variable quantum illumination, J. Opt. Soc. Am. B 31, 2045–2050 (2014). [CrossRef]
  8. I. Ruo Berchera, I.P. Degiovanni, S. Olivares, and M. Genovese, Quantum light in coupled interferometers for quantum gravity tests, Phys. Rev. Lett. 110, 213601 (2013). [CrossRef] [PubMed]
  9. G. Brida, M. Genovese, A. Meda, I. Ruo Berchera, Experimental quantum imaging exploiting multi-mode spatial correlation of twin beams, Phys. Rev. A 83, 033811 (2011). [CrossRef]
  10. G. Brida, M.V. Chekhova, G.A. Fornaro, M. Genovese, L. Lopaeva, and I. Ruo Berchera, Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light, Phys Rev. A 83, 063807 (2011). [CrossRef]
  11. G. Brida, M. Chekhova, M. Genovese, and I. Ruo-Berchera, analysis of the possibility of analog detectors calibration by exploiting stimulated parametric down conversion, Optics Express 16, (2008) 12550; [CrossRef] [PubMed]
  12. A. Meda, I. Ruo-Berchera, I.P. Degiovanni, G. Brida, M.L. Rastello, and M. Genovese, Absolute calibration of a charge-coupled device camera with twin beams, Appl. Phys. Lett. 105, 101113 (2014). [CrossRef]
  13. O. Jedrkiewicz, Y.-K Jiang, E. Brambilla, A. Gatti, M. Bache, L.A. Lugiato, and P. Di Trapani, Detection of Sub-Shot-Noise Spatial Correlation in High-Gain Parametric Down Conversion, Phys. Rev. Lett. 93, 243601 (2004). [CrossRef] [PubMed]
  14. J. Peřina, Jr., M. Hamar, V. Michálek, and O. Haderka, Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera Phys. Rev. A 85, 023816 (2012). [CrossRef]
  15. M. Bondani, A. Allevi, G. Zambra, M.G.A. Paris, and A. Andreoni, Sub-shot-noise photon- number correlation in a mesoscopic twin beam of light, Phys. Rev. A 76, 013833 (2007). [CrossRef]
  16. T. Iskhakov, M.V. Chekhova, and G. Leuchs, Generation and direct detection of broadband mesoscopic polarization-squeezed vacuum, Phys. Rev. Lett. 102, 183602 (2009). [CrossRef] [PubMed]
  17. G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda and I. Ruo-Berchera, Measurement of sub-shot-noise spatial correlations without subtraction of background, Phys. Rev. Lett. 102, 213602 (2009). [CrossRef] [PubMed]
  18. T.S. Iskhakov, V.C. Usenko, R. Filip, M.V. Chekhova, and G. Leuchs, Low-noise macroscopic twin beams, arXiv:1408.6407 (2014)
  19. D. Gatto Monticone, K. Katamadze, P. Traina, E. Moreva, J. Forneris, I. Ruo Berchera, P. Olivero, I.P. Degiovanni, G. Brida, and M. Genovese, Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics, Phys. Rev. Lett. 113, 143602 (2014). [CrossRef] [PubMed]
  20. M.D. Lukin, A.B. Matsko, M. Fleischhauer, and M.O. Scully, Quantum Noise and Correlations in Resonantly Enhanced Wave Mixing Based on Atomic Coherence, Phys. Rev. Lett. 82, 1847 (1999). [CrossRef]
  21. C.F. McCormick, A.M. Marino, V. Boyer, and P.D. Lett, Strong low-frequency quantum correlations from a four-wave-mixing amplifier, Phys. Rev. A 78, 043816 (2008). [CrossRef]
  22. Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, Double-λ microscopic model for entangled light generation by four-wave mixing, Phys. Rev. A 82, 033819 (2010) [CrossRef]
  23. Q. Glorieux, PhD Thesis, Quantum correlations by four-wave-mixing in atomic vapor. Theory and Experiments, arXiv:1101.5166 (2011).
  24. R.E. Slusher, L. Hollberg, B. Yurke, J. Mertz and J. Valley, Squeezed states in optical cavities: A spontaneous-emission-noise limit, Phys. Rev. A 31, 3512 (1985). [CrossRef] [PubMed]
  25. M. Guo, H. Zhou, D. Wang, J. Gao, J. Zhang, and S. Zhu, Experimental investigation of high-frequency-difference twin beams in hot cesium atoms, Phys. Rev. A 89, 033813 (2014) [CrossRef]
  26. S. Zhang, M. Tengner, T. Zhong, F.N.C. Wong, and J.H. Shapiro, Entanglement’s benefit survives an entanglement-breaking channel, Phys. Rev. Lett. 111, 010501 (2013); [CrossRef] [PubMed]
  27. C. Weedbrook, S. Pirandola, J. Thompson, V. Vedral, M. Gu, Discord empowered quantum illumination, arXiv:1312.3332 (2013).
  28. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393, 763 (1998). [NASA ADS] [CrossRef]
  29. G. Amelino-Camelia, Gravity-wave interferometers as quantum-gravity detectors, Nature 398, 216 (1999). [CrossRef]
  30. G. Amelino-Camelia, Astrophysics: Shedding light on the fabric of space-time, Nature 478, 466 (2011). [CrossRef] [PubMed]
  31. I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, and Čslav Brukner, Probing Planck-scale physics with quantum optics, Nature Phot. 8, 393 (2012); [CrossRef]
  32. A.Albrecht et al., Tseting quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers, Phys. Rev. A 90, 033834 (2014). [CrossRef]
  33. G. Hogan, Interferometers probes of planckian quantum geometry, Phys. Rev. D 85, 064007 (2012). [CrossRef]
  34. Fermilab web site (03/23/2012).
  35. J.D. Bekenstein, Is a tabletop search for Planck scale signals feasible?, arXiv:1211.3816 (2012).
  36. P. Aschieri and L. Castellani, Noncommutative gravity solutions, Journ. of Geom. and Phys. 60, 375 (2010). [CrossRef]
  37. P. Aschieri and L. Castellani, Noncommutative D=4 gravity coupled to fermions, JHEP 06, 086 (2009). [CrossRef]
  38. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Phot. 5, 222 (2011). [CrossRef]
  39. C.M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693 (1981). [CrossRef]
  40. K. McKenzie, D.A. Shaddock, D.E. McClelland, B.C. Buchler, and Ping Koy Lam, Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection, Phys. Rev. Lett. 88 231102 (2002). [CrossRef] [PubMed]
  41. The LIGO Scientific Collaboration (R. Schnabel et al.), A gravitational wave observatory operating beyond the quantum shot-noise limit, Nature Phys. 7, 962 (2011). [CrossRef]
  42. The LIGO Scientific Collaboration (L. Barsotti et al.) Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Phot. 7, 613 (2013). [CrossRef]
  43. S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Müller-Ebhardt, K. Danzmann, and R. Schnabel, Quantum-dense metrology, Nature Phot. 7, 626 (2013). [CrossRef]