Open Access
EPJ Web of Conferences
Volume 119, 2016
The 27th International Laser Radar Conference (ILRC 27)
Article Number 02002
Number of page(s) 4
Section Advances in Lidar Technologies and Techniques I
Published online 07 June 2016
  1. Akbulut M., et al., “Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection,” Proc. SPIE 8037, Laser Radar Technology and Applications XVI, 80370R (7 June 2011); doi: 10.1117/12.883990.
  2. Akbulut M., “Fiber Laser Coherent Lidar for Wake-Vortex Hazard Detection,” 16th Coherent Laser Radar Conference, 2011.
  3. Gary Stevenson, Horacio R. Verdun, Peter H. Stern, Walter Koechner, “Testing the Helicopter Obstacle Avoidance System,” Proc. SPIE 2472, Applied Laser Radar Technology II; doi: 10.1117/12.212025.
  4. Thomas A. DuBois, Charles A. DiPietro, Gary Stevenson, “System concept for a rotorcraft vision system to improve cargo-handling operations,” SPIE Proceedings Enhanced and Synthetic Vision, Volume 2736.
  5. Lu W., “High-power, narrow linewidth 1.5-μm fiber amplifier lidar transmitter for atmospheric CO2 detection,” Proc. SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications, 89610C (March 7, 2014); doi:10.1117/12.204120.
  6. Engin D., et al., “Highly reliable and efficient 1.5 μm fiber-MOPA-based, high-power laser transmitter for space communication,” Proc. SPIE 9081, Laser Technology for Defense and Security X, 90810G (9 June 2014); doi: 10.1117/12.2050496.
  7. Engin D., et al., “Highly efficient and athermal 1550 nm fiber-MOPA-based high-power down link laser transmitter for deep space communication,” Proc. SPIE 8610, Free-Space Laser Communication and Atmospheric Propagation XXV, 86100G (19 March 2013); doi: 10.1117/12.2005926.
  8. Torruellas, Y. Chen, B. McIntosh, J. Farroni, K. Tankala, et al., “High peak power ytterbium-doped fiber amplifiers,” Proc. SPIE 6102, Fiber Lasers III: Technology, Systems, and Applications, 61020N; doi:10.1117/12.646571;
  9. Xiaoli-Xiaoli Sun and James B. Abshire, “Modified PN code laser modulation technique for laser measurements,” Proc. SPIE 7199, Free-Space Laser Communication Technologies XXI, 71990P (February 24, 2009); doi:10.1117/12.817254;
  10. E. Browell, K. Davis, J. Abshire, J. Dobler, G. Ehert, P. Flamant, D. Sakaizawa, U. Singh, G. Spiers, “Current Status of Active Remote Sensing of CO2 and Applications to NACP Investigations,” 3rd North American Carbon Program Meeting, New Orleans, Louisiana (1-4 February 2011).
  11. James B. Abshire, et al., “A lidar approach to measure CO2 concentrations from space for the ASCENDS Mission,” Proc. SPIE 7832; doi:10.1117/12.868567;
  12. D. Sakaizawa, S. Kawakami, T. Tanaka, M. Nakajima, “Improvement of the 1.57 um laser absorption sensor with chirp modulation to evaluate spatial averaging carbon dioxide density,” Proc. SPIE, Vol. 8182 (2011).
  13. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, E. V. Browell, “Atmospheric CO2 measurements with a 2-um airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50 (14), pp. 2098–2111 (May 2011). [CrossRef] [PubMed]