Issue |
EPJ Web Conf.
Volume 233, 2020
Portuguese Condensed Matter Physics National Conference (CMPNC 2019)
|
|
---|---|---|
Article Number | 05008 | |
Number of page(s) | 6 | |
Section | Thin films, Nanostructures, Artificially Structured Materials, Device Physics | |
DOI | https://doi.org/10.1051/epjconf/202023305008 | |
Published online | 16 April 2020 |
https://doi.org/10.1051/epjconf/202023305008
Simulation of the temperature profile of BaCaZrTiO3 thin films during laser annealing
Centre of Physics/Department of Physics, University of Minho, Gualtar Campus, Braga, Portugal
* Corresponding author: rebelo.tiago@gmail.com
Published online: 16 April 2020
The laser annealing of a Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) thin film on a metglas substrate was simulated in order to understand how the annealing parameters (energy and fluence of the laser, pulse duration, etc) influence the optimization of the crystallinity of the film. Using a 1D heat diffusion equation combined with a finite difference method, the variation of the temperature with the depth relative to the film’s surface and on annealing time was studied. The laser intensity, BCZT’s reflectivity and the temperature dependence of the ther¬mal conductivity and specific heat of the BCZT were considered. No structural phase changes were detected in both the BCZT and the metglas for the values of laser fluence studied, but for 80 mJ/cm2 the maximum temperature approached near the BCZT’s melting temperature. It was observed that since the film’s ther¬mal conductivity decreases with increasing fluence, lower fluences allow for a better distribution of the laser’s energy throughout the crystal lattice, increasing the crystallinity. It was further observed that between consecutive pulses the film’s temperature stabilizes at room temperature.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.