Issue |
EPJ Web Conf.
Volume 237, 2020
The 29th International Laser Radar Conference (ILRC 29)
|
|
---|---|---|
Article Number | 02015 | |
Number of page(s) | 4 | |
Section | Aerosols | |
DOI | https://doi.org/10.1051/epjconf/202023702015 | |
Published online | 07 July 2020 |
https://doi.org/10.1051/epjconf/202023702015
Impact of the Planetary Boundary Layer Height on the Surface Aerosol Optical and Microphysical Properties
Mathematics and Physics Department, University of Salento, via per Arnesano, 73100 Lecce, Italy
* Email: salvatore.romano@unisalento.it
Published online: 7 July 2020
Lidar, nephelometer, and aethalometer measurements at the surface, co-located in time and space with Particulate Matter (PM) measurements, have been performed to investigate the impact of the daily evolution of the Planetary Boundary Layer (PBL) height on the aerosol optical and microphysical properties. Measurements were performed at a coastal site of southeastern Italy characterized by a shallow (<1000 m) PBL height. The Standard Deviation technique applied to the vertical profiles of both the lidar range corrected signal (RCS) and the linear volume depolarization ratio (δr) has been used to determine the daily evolution of the PBL height and highlight benefits and limits of using RCS and δr vertical profiles. It is shown that the PBL height, which drives the particle dispersion at the surface, significantly affects the optical and microphysical properties of the surface particles since the particle dispersion varies with their size and, consequently, the mean optical and microphysical properties of the surface particles are affected. The impact of meteorological conditions on the daily trend of the PBL height and the surface particle properties has also been highlighted.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.