Issue |
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
|
|
---|---|---|
Article Number | 07059 | |
Number of page(s) | 7 | |
Section | 7 - Facilities, Clouds and Containers | |
DOI | https://doi.org/10.1051/epjconf/202024507059 | |
Published online | 16 November 2020 |
https://doi.org/10.1051/epjconf/202024507059
Characterizing network paths in and out of the clouds
University of California San Diego, La Jolla, CA 92093, USA
* Corresponding author: isfiligoi@sdsc.edu
Published online: 16 November 2020
Commercial Cloud computing is becoming mainstream, with funding agencies moving beyond prototyping and starting to fund production campaigns, too. An important aspect of any scientific computing production campaign is data movement, both incoming and outgoing. And while the performance and cost of VMs is relatively well understood, the network performance and cost is not. This paper provides a characterization of networking in various regions of Amazon Web Services, Microsoft Azure and Google Cloud Platform, both between Cloud resources and major DTNs in the Pacific Research Platform, including OSG data federation caches in the network backbone, and inside the clouds themselves. The paper contains both a qualitative analysis of the results as well as latency and peak throughput measurements. It also includes an analysis of the costs involved with Cloud-based networking.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.