Issue |
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/202125001009 | |
Published online | 08 September 2021 |
https://doi.org/10.1051/epjconf/202125001009
Mechanical characterization of 3D printed concrete subjected to dynamic loading
1
Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio, 21 (80125), Naples, Italy
2
DynaMat Laboratory, University of Applied Sciences of Southern Switzerland, Via Catenazzi 23, 6850 Mendrisio, Switzerland
* Corresponding author: rosanna.napolitano@unina.it
Published online: 9 September 2021
In concrete structures realized by digital fabrication techniques, such as 3D concrete printing, under severe dynamic loadings (e.g. earthquakes and impact loads), the strength at the bond interfaces between layers is weak. Since these contact zones, also referred as cold joint, could potentially compromise the structural stability and also the durability of printed elements, their behaviour under high dynamic loads is fundamental to investigate. An experimental program on 3D printed concrete elements varying the waiting time, through medium and high strain-rate tensile tests is running, with a Hydro-Pneumatic Machine and a modified Hopkinson tensile bar respectively. The results of dynamic tensile tests at three different strain rates (10-5, 50 and 200 s-1) on 3D printed cementitious elements for waiting times of 0min, 10min and 30 min have been presented, in terms of Dynamic increase factors DIF versus strain rate, showing a behaviour highly strain-rate sensitive, recording an increase in tensile strength DIF up to 7.6 in the case of high strain-rate and waiting time of 30 min. The results exhibited a decrease in the dynamic interface tensile strength with the waiting time up to over 90% for a medium strain-rate and over 20% for a high strain-rate.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.