Issue |
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 4 | |
Section | Nuclear Safeguards, Homeland Security and CBRN | |
DOI | https://doi.org/10.1051/epjconf/202328806012 | |
Published online | 21 November 2023 |
https://doi.org/10.1051/epjconf/202328806012
Thermal neutron detection based on resistive gaseous devices
1 Laboratori Nazionali di Frascati – INFN, Italy
2 INFN Ferrara, Italy
3 CERN, Switzerland
4 INFN-Torino, Italy
* giovanni.bencivenni@lnf.infn.it
Published online: 21 November 2023
In the framework of the uRANIA (u-Rwell Advanced Neutron Imaging Apparatus) project, we are developing innovative thermal neutron detectors based on resistive gaseous devices such as micro-Resistive WELL (μ-RWELL) and surface Resistive Plate Counter (sRPC).
The μ-RWELL is a single amplification stage resistive MPGD developed for HEP applications. The amplification stage, based on the same Apical® foil used for the manufacturing of the GEM, is embedded through a resistive layer in the readout board. The resistive layer is realized by sputtering the back side of the Apical® foil with DiamondLike-Carbon (DLC). A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The deposition of a thin layer of 10B4C on the cathode surface allows the thermal neutrons conversion into 7Li and α ions, which can be easily detected in the active volume of the device. Results from tests performed with different detector layouts show that a thermal neutron (25 meV) detection efficiency up to 7% can be achieved with a single detector. A comparison between experimental data and the simulation of the detector behaviour has been performed. In parallel, we are proposing the development of thermal neutron detectors based on a novel RPC concept. The sRPC is a revolutionary RPC based on surface resistive electrodes realized by exploiting the well-established DLC sputtering technology on thin (50µm) polyimide foils, the same used in the manufacturing of the µ-RWELL. The DLC foil is glued onto a 2 mm thick float-glass. The 2 mm gas gap between the electrodes is ensured by spacers made of Delrin®, inserted without gluing at the edges of the glass supports. By replacing DLC with 10B4C sputtered electrodes, the device becomes sensitive to thermal neutrons. Different layouts of 10B4C coated electrodes have been tested, allowing to achieve efficiency up to 6%. The robustness, ease of construction, and scalability of the sRPC technology should allow the construction of cost-effective large area detector units as required by applications in homeland security (such as Radiation Portal Monitor).
Key words: Thermal neutrons / Boron coating / MPGD / RPC
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.