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Abstract. More accurate fission cross section calculations in presence of underlying intermediate structure are
strongly desired. This paper recalls the common approximations used below the fission threshold and quantifies
their impact. In particular, an exact expanded R-matrix Monte Carlo calculation of the intermediate structure,
deeply mixed with the fluctuations of the class-I and II decay amplitudes, is shown. This paper also insists on
the microscopic structure of the level densities as a function of the nucleusdeformation and show preliminary
neutron induced fission cross section calculations for239Pu and240Pu using newly calculated combinatorial level
densities. Comparisons with recent evaluated and measured fission cross sections are made.

1 Introduction

The modelling of fission cross sections over intermediate
structure has been challenging since the first experimen-
tal discoveries in 1968 of the phenomenon of narrow in-
termediate structure in slow neutron fission measurements
on 237Np and240Pu nuclei (respectively by Paya et al. [1]
and Migneco et al. [2]). This phenomenon, explained by
the coupling between highly deformed vibrational class-
II states (located in a secondary well of the nucleus po-
tential energy) and the class-I states at ground-state de-
formation, has required modifications to the R-matrix for-
malism for interactions in the deformation channels. This
extended R-matrix reaction theory involving the splitting
of the reaction Hamiltonian into deformation, intrinsic and
coupling terms was developed in particular by Lynn [3],
and led to various asymptotic formulations of the average
fission cross section depending of the strength of the cou-
pling element. Ever increasing computing capabilities have
made possible more exact calculations of the average fis-
sion cross section, using a Monte Carlo sampling of ener-
gies, fission and coupling widths of the class-II states as
well as the characteristics of the class-I states from the
statistical distribution of levels and partial widths. A few
attempts were made in the past [4,5], but the most signif-
icant application of this method was performed in 2002
by Lynn and Hayes [6] over a wide range of actinide fis-
sion cross sections. In addition to better predict the magni-
tude of the cross section, this Monte Carlo approach paves
the way for modeling genuine fluctuations in the Unre-
solved Resonance energy Range (at the right energies and
with correct fluctuation envelopes) and provides a more
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fundamental background for evaluating meaningful fission
width parameters in the Resolved Resonance Range. The
present work aims at performing accurate fission cross sec-
tion calculations on the basis of sound physics (less phe-
nomenology, fitted parameters and dependency on experi-
mental fits) in order to

– better model current applications but also better predict
cross sections for difficult or impossible to measure nu-
clei,

– better estimate of related fission quantities (fission frag-
ments, fission spectra, etc.),

– reinforce our confidence in the estimation of parameter
uncertainties and associated covariance data.

This paper will summarize our current advances on cal-
culated cross sections and illustrate them by preliminary
results on neutron induced reactions on239Pu and240Pu with
comparison to recent evaluations and fission data. Finally
foreseen developments will be discussed.

2 Theoretical Background

2.1 Classic approaches in resonance range
analyses

Low energy cross sections are well reproduced by classic
R-matrix theory of nuclear reactions, which is based on the
eigenfunctions and eigenvalues of the full nuclear Hamil-
tonian in an internal region with boundary conditions im-
posed to the reaction channels at the region surface. These
conditions connect the external wave functions to theR-
matrix internal states and so define an ensemble of eigen-
functions in the inner region. It also introduces the con-
cept of reaction channel defining the maximum of radial
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distance within which a nuclear force-type interaction be-
tween the two ”bodies” involved may occur. An entrance
or an exit reaction channel is defined by its quantum num-
bersα, l, s, J which qualify respectively the nature and the
number of nucleons of each component of the pair (α), the
relative orbital angular momentum of the moving particle-
target (or residual) nucleus pair (l), the channel spin (s) and
the total angular momentum (J) of the system.

In the original R-matrix theory fission channels are as-
sumed to be treated as true particle reaction channels, as
just described, with the channel radii close to the saddle
point. We refer to these as the fission product channels,
each of which is denoted by the masses of the pair of prod-
ucts, their states of excitation, their angular momenta and
parities, etc. Bohr [7] pointed out, however, that in a phy-
sical sense a fission channel should be regarded as being
entered at the saddle point, where the deforming nucleus is
relatively ”cold”, and a specific channel would be defined
by the internal state of excitation of the deforming nucleus.
It appeared that some of the properties of this internal ex-
citation, notably theK quantum number (i.e.; the projec-
tion of J on the elongation axis), could be ”frozen in” al-
ready at the saddle point. This point of view has since dom-
inated the analysis of cross sections such as Reich-Moore,
in which only a few fission channels are stipulated. The re-
duced width amplitudes of the fission product channels can
be regarded as being correlated with the amplitude of the
channel at the fission barrier, thus justifying the use of the
barrier channel (or, ”transition state”) concept (illustrated
in Fig. 1) in R-matrix theory. These channels require for
their description a parameterη characterizing globally the
deformation and a wave functionϕ(η) which satisfies the
Schrodinger equation with suitable boundary condition at
the channel entrance close to the saddle point deformation:

− h−2

2B
∂2ϕ(η)
∂η

+ (υ(η) − E)ϕ(η) = 0, (1)

with B the inertial parameter, including the effect of nu-
clear interactions among the ”internal” degrees of freedom
as the deformation changes.

In the Unresolved Resonance energy Range on which
statistics applies, Hauser-Feschbach (HF) theory with width
fluctuations, averagingR-matrix theory over the Gaussian
orthogonal ensemble, is appropriately used for fission cross
section measurement analyses. However HF theory is of-
ten associated with effective single hump barrier penetra-
bilities for many fissile nuclides studies (such as those con-
strained by the current status of the SAMMY code). This
approach allows a satisfactory reproduction of average fis-
sion cross sections but relies heavily on the adjustment of
phenomenological average fission widths, fission barrier
heights.

2.2 Inclusion of Fission in Classic R-matrix Theory

Experimental evidence of intermediate states and double-
humped barrier has motivated the inclusion of fission de-
formation modes inR-matrix theory in a more formal way.

Fig. 1. Potential energy of deformation of the241Pu∗ system as a
function of the elongation. Comparison between the single hump
of the Liquid Drop Model (LDM) and the the double-hump bar-
rier shape of the Shell Correction Method (SCM).

A generalized variableη, which describes the overall con-
tinuous elongation of the system along the fission path, was
introduced by Lynn [3]. The Hamiltonian operator:

H = Hη + Hint(ζ, η0) + Hc(η, ζ; η0), (2)

is decomposed into

– a collective component,Hη, depending explicitly on
the deformation parameter,

– an intrinsic Hamiltonian component,Hint, that depends
on the individual nucleon coordinates,ζ, and,

– a coupling Hamiltonian,Hc.

The eigenfunctions and eigenvalues ofHint andHη are
respectivelyχµ(η) andεµ(η) ≡ ǫµ(η) − ǫµ(η0); the intrin-
sic excitation energies relative to ”ground state” and,φν(η)
and εν. It is convenient to expand the eigenstatesXλ of
the generalized R-matrix of the internal region in terms of
product pairs of the quasi-vibrational functionsφν(η) and
the intrinsic functionsχµ(η) defined at some special de-
formationsη0 such as those of the normal and meta-stable
values of the double hump fission barrier. These can be
constituted of two groups of auxiliary states (XI

λI
andXII

λII
)

formed from expansions limited to vibrational states local-
ized principally in either the primary or secondary well of
the deformation potentialυ(η):

XI
λ =
∑

νµ

Cλ(νµ)φ
I
ν(µ)χµ, (3)

for the class-I states, and similarly for the class-II states.
The finalR-matrix compound nucleus statesXλ, which

can be classed asymptotically as either normal (class-I)
or meta-stable well (class-II) states, contain a mixture of
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these two sets of auxiliary states (expressed by the admix-
ture coefficientsCλ(νµ) into eigenstatesλ). If the interme-
diate barrier between the two wells is high relative to the
excitation energy the overlap between class-I and -II vi-
brational states is small and the mixing of the two classes
is weak, and the class-II compound states (with relatively
high vibrational amplitudes at the outer barrier) then ap-
pear as clear intermediate resonances.

Treatment of class-I and class-II states coupling.
For a given class-II state,λII , the average over neighbor-
ing class-I levels of the squared matrix elements between
it and the class-I states,H2

c (λIIλI), is proportional to the
mean coupling width,〈ΓλII (c)〉:

〈H2
c (λIIλI)〉α = 〈ΓλII (c)〉αDI/2π, (4)

with 〈ΓλII (c)〉α being deduced from the transmission coeffi-
cientTA across an inner barrier channelα:

2π〈ΓλII (c)〉α/DII = TA(α). (5)

Similarly, the partial fission component of the average class-
II fission width across theβ outer barrier channels is de-
duced from the transmission coefficientTB

2π〈ΓλII ( f )〉β/DII = TB(β). (6)

Determination of Eλ and Xλ at sub-barrier energies.
In the sub-barrier case, the assumption that the total fission
width of a class-II state is always significantly less than the
class-II level spacing, is reasonable. According to Ref. [3],
in the most general case where the total fission width of
the class-II state considered is smaller than a few class-I
mean spacings (e.g.;ΓλII < 4DI), an exact diagonalization
of the single class-II state considered (the contributionsof
the distant class-II are added later) with its discrete class-
I neighbors must be performed to calculate the eigenval-
ues,Eλ, of the Hamiltonian,Hc (Eq. 2), in the intermediate
structure. The coefficientsCλ(λI ) andCλ(λII ) are then:

Cλ(λI ) = −
〈H2

c (λIIλI)〉
EλI − Eλ

Cλ(λII ) (7)

and,

C2
λ(λII ) =

[
∑

λI

| 〈Hc(λIIλI)〉 |2
(EλI − Eλ)2

+ 1
]−1
. (8)

Cλ(λI ) andCλ(λII ) are used to calculate the partial resonance
parameters corresponding to open reactions in both wells.
In particular the R-matrix fission width, entering in the ave-
rage cross section formula in narrow resonance approxima-
tion, is calculated as:

Γλ( f ) = 2P f

νmax
outer
∑

ν=1

C2
λ(λII ) × γ

2
λII ,ν

( f ) (9)

with νmax
outer being the maximum number of outer barrier fis-

sion channels open or partially open,P f , the barrier pene-
tration factor from beyond the outer saddle point and,γλII ,ν,
the class-II decay width amplitude by fission into an outer
channelν.

3 Construction of Individual and
Continuum States

3.1 Individual compound nucleus and transition
states

In the case of an even-even target (or fissioning) nucleus,
only collective states exist at low energies. The existenceof
a two quasi-particle (2qp) intrinsic state is correlated tothe
breaking of the pairing energy force between two neutrons
or two protons and its excited energy is the sum of the two
independent quasi-particle energies:

Eexc
2qp = Eν + Eν′

=

√

(eν − λn/p)2 + ∆2
n/p +

√

(eν′ − λn/p)2 + ∆2
n/p(10)

with eν andλn/p being respectively the single-particle en-
ergy and the Fermi energy. Associated spin and parity are
respectively:

K2qp =| Kν ± Kν′ |, π2qp = πν ∗ πν′ . (11)

This implies that only individual state band heads (on top
of which rotational bands are built) of collective nature ex-
ist at low energies:

Erot = {h−2
/(2ℑ)}{J(J + 1)− K(K + 1)} (12)

with,

Jπ = Kπ, (K + 1)π, (K + 2)π, ................... forK , 0

= 0+,2+,4+, ....................................... forK = 0+

= 1−,3−,5−, ....................................... forK = 0−

Equation 10 clearly depicts the minimum energy gap
value, two pairing energies (2∆n/p), encountered between
the vibrational ground state and the lowest quasi-particle
state. This picture is more complicated for odd-mass (Eexc

1qp =

En/p) and odd-odd nuclei (Eexc
2×1qp = En+Ep) which present

respectively 1 neutron or proton quasi-particle state exci-
tation and, 1 neutron and 1 proton quasi-particle state ex-
citations in the ground state. The construction of the corre-
sponding individual level sequence requires, prior to rota-
tional enhancement building, a merging of the low energy
vibrational and simple quasi-particle excitations to form
combinatorial state band heads of energy, spin and parity:

Eexc
N = Eexc

qp + Eexc
vib

KN = | Kqp ± Kvib |
πN = πqp ∗ πvib (13)

Low-lying collective levels are usually known exper-
imentally up to about 1 MeV. The240Pu vibrational in-
elastic levels [8] include a mass asymmetry vibration with
Kπ = 1− at E∗ = 0.60 MeV, a beta-vibration,Kπ = 0+ at
E∗ = 0.86 MeV, a bending-vibration,Kπ = 1− atE∗ = 0.94
MeV and a gamma vibration,Kπ = 2+ at E∗ = 1.14 MeV.
Above this energy, extra unobserved levels (Jπ = 5+, E∗ =
1.145 and 1.298 MeV; Jπ = 6+, E∗ = 1.223 and 1.316
MeV; Jπ = 4−, E∗ = 1.334 MeV; Jπ = 5−, E∗ = 1.399
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Fig. 2. Schematic of the240Pu∗ individual low-lying vibrational
sequence used at the inner and outer barriers.

MeV; Jπ = 6−, E∗ = 1.387 and 1.477 MeV were added
to ensure the consistency with the combinatorial level den-
sity used above this individual state sequence. For an odd-n
mass target nucleus such as239Pu , the inelastic spectrum
also includes low energy single-particle neutron states [9].
The lowest single-particle levels for239Pu target nucleus
are respectively in [N, nz, Λ, Ω] asymptotic quantum num-
bers notation 1/2+[631] at E∗ = 7.8 keV; 5/2+[622] at
E∗ = 285 keV, 7/2−[743] at E∗ = 392 keV, 1/2−[631]∗0−

at E∗ = 470 keV, and 7/2+[624] atE∗ = 512 keV.
A similar approach is adopted to construct the transi-

tion states on top of each barrier with the average level
spacing adjusted to the deformation. A schematic of the
individual low-lying vibrational sequence used for the in-
ner barrier of the240Pu∗ is shown in Fig. 2 (left-hand side)
which mostly exhibits combinations of gamma vibrations.
The lowest single particle neutron state (2qp) appears at
1.39 MeV above the inner barrier, and so is not visible on
this picture. The right-hand side of Fig. 2 shows a similar
schematic for the outer barrier but exhibits at low energy
a mass asymmetry vibration and at rather higher energy a
bending vibration and then, simple combinations of them.
The lowest single particle neutron state (2qp) shows up at
1.7 MeV above the outer barrier.

3.2 Construction of level densities

A combinatorial procedure was adopted to construct level
densities as a function of the excitation energy and the nu-
cleus deformation. This procedure is a generalization of
the method used in section 3.1 for creating the sequence
of individual states. It deals now with multi-combinations
of neutron and/or proton quasi-particle states (leading to
1qp, 3qp, 5qp, etc. or 2qp, 4qp, 6qp, etc. states) and multi-
combinations of mass asymmetry, bending, gamma, etc.
vibrational states. Subsequent combinations of these multi-
quasi-particle and multi-vibrational states are made, on the
model of Eqs. 13 to form the combinatorial rotational band
heads.

The main ingredients of this procedure are the pairing
gaps, the moment of inertiah−2

/(2ℑ) and, the vibrational

Fig. 3.Cumulated inelastic level densities (Total level density in-
tegrated over the energy spectrum from 0 eV to the considered
excitation energyEexc) of the 239Pu target nucleus as a function
of Eexc. Our calculation (solid curve) is compared to the HF-BCS
prediction (dashed-curve) tabulated in the RIPL-2 database. The
plot displays at low energy the individual level density, matching
the continuum level density calculation at 1.3 MeV, used in our
calculation.

and the single-particle state sequences at barrier deforma-
tions. The240Pu∗ single-particle neutron and proton states
at the inner deformation are currently extracted from Nils-
son et al. [10] (valid for the first hump and secondary min-
imum only) and the states sequences at the outer deforma-
tion are supplied by M̈oller et al. [11] slightly extrapolated
for an additional degree of liberty in the shape of the nu-
cleus. Another sensitive parameter, as energy increases, is
the so-called blocking attenuation parameter (bn/p). This
later insures the gradual collapse of the nucleon pairing
gap (∆n/p) with energy because of the decrease of the num-
ber of unoccupied single-particle states below the Fermi
energy:

∆
′

n/p = ∆n/pexp[−q2
n/p,e f f /b

2
n/p], (14)

with qn/p,e f f , the effective number of quasi-particles in a
state following Gaussian distribution. This leads to a low-
ering of the ground state excitation energy value (EN) with
energy of the combinatorial levelN:

E
′

N = EN −
1
4

∑

x,p

ρxS [∆2
x − ∆

′2
x ], (15)

with ρxS , the nucleon single-particle state densities.

Table 1. Fundamental barrier values [MeV] used for the240Pu∗

compound nucleus in this preliminary work compared with data
from HF-BCS predictions [12] and macroscopic-microscopic Fi-
nite Range Liquid Drop Model calculations [13].

Barrier This HF-BCS FRLDM
work [12] [13]

Inner 5.8 6.5 5.99
Outer 5.0 5.61 4.91
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Figure 3 shows the cumulated inelastic level densities
of the 239Pu target nucleus as a function of excitation en-
ergy,Eexc. Our calculation (solid curve) exhibits a similar
shape but is different in magnitude than the HF-BCS mass
model prediction of Goriely [12] (dashed curve) available
from the RIPL-2 database. Similar cumulated level densi-
ties, but at barrier deformations, are shown Fig. 4. The in-
ner barrier calculations disagree in magnitude (thick solid
curve compared to the thick dashed curve). However, the
HF-BCS higher calculated level density might be compen-
sated by a higher inner barrier value (Table 1). The outer
barrier level densities agree in magnitude above 3.75 MeV
(thin solid curve compared to the thin dashed curve), but
the HF-BCS outer barrier value, smaller than the HF-BCS
inner value, is still higher than our value (Table 1). Above
the individual level density matching energy, our combina-
torial level density calculation has been tuned to obtain a
better agreement between our calculated fission cross sec-
tion and the ENDF/B-VII.0 evaluation. A convenient ap-
proach based on the breaking of the level density into en-
ergy regions (or phases),φ, of simple exponential increase,
each characterized by a numerical constant (Cφ), a tempe-
rature (Tφ) and a spin-dispersion coefficient (σφ), has been
adopted:

ρφ(Eexc) = Cφ
(2J + 1)

4σ2
φ

exp
(−J + 1

2)2

2σ2
φ

exp (Eexc/Tφ) (16)

with σ2
φ = C1

φ + C2
φ.
√

E + C3.E . This explains the non-
regular shape changes observed in our calculation (Fig. 4).

Fig. 4. Cumulated transition states densities of the240Pu∗ com-
pound nucleus as a function of the excitation energy. The solid
curves correspond to our calculations which are compared to
the HF-BCS predictions (dashed-curves) tabulated in the RIPL-2
database. The thick curves are relative to the inner barrier and the
thin curves to the outer barrier. At low energies, our calculations
are based on individual level sequences which match the contin-
uum level density calculation at 1.5 and 1.3 MeV respectively for
the inner and outer barriers.

4 Treatment of Underlying Intermediate
Structure in Fission Cross sections

4.1 Above barrier excitation energies

The presence of the inner barrier introduces a simple de-
coupling effect between the normal and meta-stable re-
gions of deformation. This decoupling is expressed by two
independent fission barrier transmission coefficientsTA and
TB, with barriers commonly chosen as inverted parabolas.
The resulting effective transmission coefficient for com-
pound nucleus states of the primary well through specific
outer deformation channel (µ) is simply:

T (µ)
e f f =

TATB(µ)

TA + TB
. (17)

In this strong coupling approximation,T (µ)
e f f is used directlly

in the HF formalism as if there was one barrier only. To
obtain a more accurate calculation, the fluctuations of the
class-I and class-II fission widths (so-calledS (I)

n f andS (II)
n f )

must be considered assuming a chi-square statistical distri-
bution with an effective number of degrees of freedom dif-
ferent for each barrier. The resulting average fission cross
section is:

σJπ
n f = σ

Jπ
n,(CN)P f

= πλ−2(gJ)TI(n)

µmax
outer
∑

µ=1

TATB(µ)

TA + TB
S (I)

n f S
(II)
n f . (18)

4.2 Sub-barrier excitation energies

Below the barriers, equation (18) is no more valid. Assum-
ing that the coupling between a single class-II state and
its class-I neighboring states is still quite strong (mode-
rately weak coupling corresponding to high inner barrier
andΓλII ( f ) ∼ DII), a Lorentzian energy dependence of the
fission width can be used to calculate the average fission
cross section over a single resonance, with an average over
a class-II resonance. Moreover assuming that the statistical
fluctuations of widths, spacing and coupling elements can
be ignored (so-called ”picket fence model”), the resulting
average fission probability is:

P f = 1+
( TI

T( f )

)2
+

2TI

T( f )
coth
(TA + TB

2

)−1/2
, (19)

with TI , the total transmission coefficient over all radiation,
elastic and inelastic channels andT( f ), the statistical fission
transmission coefficient of Eq. 18.

Monte Carlo approach. To circumvent the exact analyt-
ical calculation of the fluctuations which is hardly tractable,
a Monte Carlo approach, described in Reference [6] can
be used. In this approach individual values of all parame-
ters involved in the class-I and II states coupling treatment
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(and identified in section 2.2) are sampled from the appro-
priate distribution functions and mean values. Preliminary
results for239Pu and240Pu fission cross sections are shown
on Figs. 5 and 6 where the impact of the various approxi-
mations on the fission transmission coefficient with respect
to the exact Monte Carlo approach can be assessed.

The net effect of the fluctuations can be estimated from
the Uniform Intermediate Structure formula without (UIS
≡ Eq. 19; dotted curve) and with (UIS× fluct.; dotted-
dashed curve) fluctuation terms. The difference, decreas-
ing with energy, on the average cross section is as much as
30% depending on the number of fission channels open.

The effect of the intermediate structure (UIS× fluct.
≡ Eq. 19 multiplied by fluctuation terms; dotted-dashed
curve) is to lower the average cross section below the value
obtained in the statistical model (HF× fluct. ≡ Eq. 18;
dashed curve). This effect is expected to be larger for sub-
threshold fission in fertile nuclides (240Pu ) rather than for
fissile isotopes (239Pu ).

The exact Monte Carlo treatment (thick solid curve),
taking into account both fluctuations and intermediate struc-
tures, reproduces quite well the experimental data below
200keV. Above this energy, an additional tuning of fission
barrier parameters should be done to improve the agree-
ment with the data.

Fig. 5. 239Pu fission cross sections calculated under various ap-
proximations (see text for details) and compared to recent eva-
luated libraries.

5 Perspectives

The accurate, physics-based, and predictive modeling of
fission cross sections above the resolved resonance range is
the ultimate goal of our current efforts. Using Bjornholm-
Lynn’s theory for the treatment of intermediate structures,
model parameters extracted from modern theoretical nu-
clear structure calculations, and a database of consistent
parameters across isotopes, such modeling appears within
reach. Our ongoing LANL-CEA collaboration is address-
ing this topic with promising preliminary results, as shown
in this paper. Obviously much work remains to encompass
the full complexity (multi-dimensional, time-dependent,
temperature-dependent) of the nuclear fission problem.

Fig. 6. 240Pu fission cross sections calculated under various ap-
proximations (see text for details) and compared to recent eva-
luated libraries. Recent measurements by Tovesson et al.[15] and
Laptev et al. [16] are also shown.
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