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Abstract. The nucleus-nucleus potential and energy dissipation in fusion reactions are obtained from micro-
scopic mean-field dynamics. The deduced potentials nicely reproduce the one extracted from experimental data.
Energy dissipation shows a universal behaviour between different reactions. Also, the dispersion of mass distri-
bution in transfer reaction is investigated in a stochastic mean-field dynamics. By including initial fluctuations
in collective space, the description of the dispersion is much improved compared to that of mean field only. The
result is consistent with the macroscopic phenomenological analysis of the experimental data.

1 Introduction

The interplay between nuclear structure and dynamical ef-
fects is crucial to properly describing nuclear reactions at
energies close to the Coulomb barrier. Therefore, the the-
ories describing such nuclear reactions need a unified de-
scription for both nuclear structure and dynamics. More-
over, recent developments on nuclear facilities introduce
much interest on the properties of nuclei far from the sta-
bility. The time-dependent Hartree-Fock (TDHF) theory
[1–4] based on the Skyrme energy density functional (EDF)
provides a rather unique tool for describing nuclei over the
whole nuclear chart. The TDHF theory solves the time evo-
lution of single-particle wave functions according to

i~
∂

∂t
ρ = [h[ρ], ρ], (1)

where h[ρ] denotes the self-consistent mean-field Hamil-
tonian from the Skyrme EDF, denoted by E[ρ], obtained
from h[ρ] = δE[ρ]/δρ with the one-body density ρ. This
model automatically includes important dynamical effects
such as vibrations of nuclei, neck formations, and nucleon
transfer during reactions. Since recent computational de-
velopments now enable us to include all the terms of the
Skyrme EDF used in static Hartree-Fock calculations in
the three-dimensional coordinate space [5–8], the descrip-
tion of nuclear reactions using TDHF should be revisited.

In this contribution, as an illustration of applications of
the TDHF theory to nuclear reactions, we discuss the prop-
erties of nucleus-nucleus potential and energy dissipation
extracted from the TDHF model [9,10]. Moreover, we in-
vestigate fluctuations of one-body observables, especially,
the dispersion of mass distributions in transfer reactions
using a stochastic mean-field model [11,12].
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2 Nucleus-nucleus potential and energy
dissipation from mean-field dynamics

Nucleus-nucleus potential and energy dissipation are ex-
tracted as follows [9,10]: (i) The TDHF equation for head-
on collision is solved to obtain the time evolution of the
total density of colliding nuclei. (ii) From the total den-
sity, we compute at each time the relative distance R, as-
sociated momentum P, and reduced mass µ of colliding
nuclei. (iii) We assume that the time evolutions of R and
P obey a classical equation of motion including a friction
term which depends linearly on the velocity Ṙ:

dR
dt

=
P
µ
,

dP
dt

= −dV
dR
− γ(R)Ṙ, (2)

where V(R) and γ(R) denote the nucleus-nucleus poten-
tial and friction coefficient, respectively. The friction coef-
ficient γ(R) describes the effect of energy dissipation from
the macroscopic collective degrees of freedom to the mi-
croscopic ones. For the TDHF calculations presented in
this contribution, the three-dimensional TDHF code devel-
oped by P. Bonche and coworkers with the SLy4d Skyrme
effective force [5] is used. The mesh sizes in space and in
time are 0.8 fm and 0.45 fm/c, respectively. For more de-
tails, see Refs. [9,10].

Dynamical effect on potentials deduced from TDHF
trajectories at center-of-mass energies close to the Coulomb
barrier is seen in all reactions considered here. Figure 1
shows the difference between the barrier height deduced
from TDHF trajectories (VB) and the barrier height ex-
tracted from experimental data (Vexp

B ) [13,14] as a function
of VB. The solid line corresponds to the barrier height ex-
tracted using high-energy TDHF trajectories (Ec.m. � VB),
whereas the dashed line is the result for low-energy TDHF
trajectories (Ec.m. ∼ VB). The former identifies with the
barrier height of the frozen density apploximation [15].
Dynamical reduction of the barrier height from high-energy
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Fig. 1. Barrier height VB deduced from our method minus ex-
perimental barrier height Vexp

B as a function of extracted barrier
height for the reactions indicated in the figure. The values VB

are deduced from high energy (solid line) and from low energy
(dashed line) TDHF trajectories, respectively.

TDHF to low-energy TDHF is clearly seen for all reac-
tions. Moreover, because of this reduction, the value of the
barrier height at low energy approaches the experimental
data. This underlines the importance of dynamical effects
close to the Coulomb barrier and shows the precision of
our method.

Our method is also able to provide information on en-
ergy dissipation through the friction coefficient γ, which is
shown in Fig. 2. In this figure, we present reduced friction
coefficients β(R) ≡ γ(R)/µ as a function of R scaled by
the Coulomb barrier radius RB for different reactions. Fig-
ure 2 clearly shows that the order of magnitude of β(R) and
the radial dependence are almost independent on the size
and asymmetry of the system. We also compare our results
with that of a microscopic model based on small amplitude
response by Adamian et al. [16] by the solid circles. The
radial dependence and the magnitude of the friction coeffi-
cient are very similar to those extracted from our method.

From here, we conclude that the use of the macroscopic
equation (2) is valid and mean-field dynamics gives good
descriptions for the nucleus-nucleus potential and energy
dissipation.

3 Mean-field fluctuations

It is well known that the mean-field model gives good de-
scriptions for average evolution of one-body observables
in low-energy nuclear reactions. However, it completely
fails in the description of the dynamics of fluctuations of
one-body observables. One of the shortcomings may be the
failure of the mean-field description of the dispersion of
mass distributions of final fragments in deep inelastic col-
lisions. It has been recognized for a long time that TDHF
calculations severely underestimate the dispersion of mass
distributions of experiments [17,18], although TDHF cal-
culations well reproduce the mean value of fragment mass.

During the past decades, much effort has been devoted
to overcoming this difficulty and to developing transport
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Fig. 2. Extracted reduced friction β(R) ≡ γ(R)/µ as a function of
R scaled by the Coulomb barrier radius RB for different reactions.
A microscopic friction coefficient by Adamian et al. is shown by
the solid circles for comparison.

theories that are able to describe not only mean values but
also fluctuations (for a review, see Refs [19,20]). Among
them, the variational principle by Balian and Vénéroni (BV)
appears as one of the most promising methods [21–23].
However, even nowadays it remains difficult to apply [24].
More than 30 years after the first application of the TDHF
theory, the absence of a practical solution to include fluctu-
ations beyond mean field in a fully microscopic framework
strongly restricts applications of mean-field-based theories.

In order to overcome this difficulty, recently we pro-
posed a stochastic mean-field (SMF) approach, which is a
stochastic extension of the mean-field model for low en-
ergy nuclear dynamics so as to include zero-point fluctua-
tions of the initial state [11,25]. The initial density fluctua-
tions are simulated by representing the initial state in terms
of a suitable ensemble of initial single-particle density ma-
trices, which is similar to the idea in Refs. [26,27]. In fact,
this idea can be regarded as the beginning of constructing
time-dependent version of configuration mixing calcula-
tions. In this manner, the description with single Slater de-
terminant is replaced by a superposition of multi Slater de-
terminants. A member of the ensemble, indicated by event
label λ, can be expressed as

ρλ(r, r′, t) =
∑

i jστ

Φ∗iστ(r, t; λ)ρλi j(στ)Φ jστ(r′, t; λ), (3)

where summations i and j run over a complete set of single-
particle wave functions Φiστ(r, t; λ), and σ and τ denote
spin and isospin quantum numbers. According to the de-
scription of the SMF approach [25], the elements of den-
sity matrices ρλi j(στ) are assumed to be time-independent

random Gaussian numbers with mean value ρλi j(στ) = δi jnστi

and with the variance of the fluctuating part δρλi j(στ) spec-
ified by

δρλi j(στ)δρλj′i′ (σ
′τ′)

=
1
2
δ j j′δii′δττ′δσσ′

[
nστi (1 − nστj ) + nστj (1 − nστi )

]
. (4)
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Here, nστi denotes the average single-particle occupation
factor. At zero temperature occupation factors are 0 and
1, and at finite temperature they are determined by the
Fermi-Dirac distribution. The great advantage of the SMF
approach is that each Slater determinant evolves indepen-
dently from each other following the time evolution of its
single-particle wave functions in its self-consistent mean-
field Hamiltonian, denoted by h(ρλ), according to

i~
∂

∂t
Φiστ(r, t; λ) = h(ρλ)Φiστ(r, t; λ). (5)

In the following applications, we focus on the head-on
40Ca+40Ca collision around the Coulomb barrier energy.

3.1 Fusion reactions

First, we apply the SMF approach to fusion reactions [11].
To discuss the fluctuation of collective variables, we map
the SMF time evolution to a one-dimensional macroscopic
Langevin equation, which is similar to Eq. (2) except an
additional Gaussian random force ξλP(t):

d
dt

Pλ = − d
dRλ

U(Rλ) − γ(Rλ)Ṙλ + ξλP(t), (6)

Ignoring non-Markovian effects, the random force ξλP(t)
with zero mean value reduces to white noise specified by a
correlation function,

ξλP(t)ξλP(t′) = 2δ(t − t′)DPP(R). (7)

Here DPP(R) denotes the momentum diffusion coefficient.
We note that the expression of the diffusion coefficient has
the same form as that obtained from the phenomenologi-
cal nucleon exchange model [28]. As an example, the dif-
fusion coefficient for the head-on 40Ca+40Ca collision at
Ec.m. = 100 MeV is shown in Fig. 3.
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Fig. 3. Diffusion coefficient as a function of the relative distance
for the head-on 40Ca+40Ca collision at Ec.m. = 100 MeV.

3.2 Mass dispersion in transfer reactions

Another application has been made to the dispersion of the
fragment mass distribution to improve the mean-field de-
scription [12]. To do so, we investigate transfer reactions

near the Coulomb barrier, where nucleon exchange will
occur during reaction, and estimate the dispersion of the
fragment mass distribution.

In the SMF approach, time evolution of the mass num-
ber of the projectile-like fragment Aλ

P is also described by
a Langevin equation [29],

d
dt

Aλ
P = v(Aλ

P, t) + ξλA(t), (8)

where v(Aλ
P, t) denotes the drift term for nucleon transfer.

The Gaussian white noise random force ξλA(t) is determined
with zero mean value and with a correlation function,

ξλA(t)ξλA(t′) = 2δ(t − t′)DAA, (9)

where DAA is the diffusion coefficient associated with nu-
cleon exchange. The variance σ2

AA of fragment mass dis-
tribution is determined by small fluctuations of the mass
number δAλ

P through σ2
AA(t) = δAλ

PδAλ
P. According to the

Langevin equation, neglecting contributions from the drift
term, the variance is related to the diffusion coefficient ac-
cording to [29,30]

σ2
AA(t) ' 2

∫ t

0
DAA(s)ds. (10)

In the phenomenological nucleon exchange model, the
relation σ2

AA(t) = Nexc(t) was obtained, where Nexc(t) de-
notes the accumulated total number of exchanged nucleons
until time t, and was extensively used to analyze the exper-
imental data of mass dispersion [31]. In the following, to
check whether the SMF approach satisfies the above rela-
tion, we estimate the both quantities by the SMF approach.

In Fig. 4, the variances of the fragment mass distri-
butions deduced from the SMF approach for the head-on
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40Ca+40Ca reaction at three center-of-mass energies are
shown by lines. The number of exchanged nucleons is in-
serted in Fig. 4 by the solid circles, solid triangles, and
solid squares from high to low energies. The mass vari-
ance estimated from the SMF approach is consistent with
this relation. We also estimate the variance of fragment
mass distribution using the standard TDHF approach. The
asymptotic values of σ2

AA for the 40Ca+40Ca reaction are
0.004, 0.008, and 0.008 from low to high energies, while
the number of exchanged nucleons are 0.432, 1.441, and
3.634. The TDHF results are much smaller than the num-
ber of exchanged nucleons and are also much smaller than
the results obtained from the SMF approach that are 0.730,
1.718, 3.790. The failure of the TDHF theory on the de-
scription of variances of the fragment mass distribution has
been recognized for a long time as a major limitation of the
mean-field theory. It appears that the SMF approach cures
this shortcoming. As seen from Fig. 4, not only the asymp-
totic value of σ2

AA but also the entire time evolution is very
close to the evolution of Nexc(t).

4 Conclusion

Mean-field dynamics and mean-field fluctuations using mi-
croscopic time-dependent models are discussed in the con-
text of low energy nuclear reactions. We have shown that
the TDHF theory gives precise values of nucleus-nucleus
potential and a universal behavior of energy dissipation.
We have also shown that the SMF approach correctly de-
scribes the mass dispersion of final fragments in transfer
reaction at energies near the Coulomb barrier. This gives a
practical solution to properly describe mean-field fluctua-
tions on top of mean field.

This work is supported in part by US DOE Grant DE-FG05-
89ER40530.
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