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Abstract. Exact analytic solutions are obtained in three-body problem for the scattering of light particle on
the subsystem of two fixed centers in the case when pair potentials have a separable form. Solutions show an
appearance of new resonance states and dependence of resonance energy and width on distance between two fixed
centers. The approach of exact analytical solutions is expanded to the cases when two-body scattering amplitudes
have the Breit-Wigner’s form and employed for description of neutron resonance scattering on subsystem of two
heavy nuclei fixed in nodes of crystalline lattice. It is shown that some resonance states have widths close to
zero at the certain values of distance between two heavy scatterer centers, this gives the possibility of transitions
between states. One of these transitions between three-body resonance states could be connected with process of
electron capture by proton with formation of neutron and emission of neutrino. This exoenergic process leading
to the cooling of star without nuclear reactions is discussed.

1 Introduction

Exact solutions are of importance in quantum mechanics
since they give rise to plain comprehension into phenom-
ena occurring in the systems being considered. Usually ex-
act solutions in analytic form can be obtained in simple
models and grown effective tools for investigation of more
complicated problems. It should be noted that revealed fea-
tures of model problems take place actually in appropriate
real physical systems.

Some of model problems are of the significant impor-
tance in quantum physics. So, there are well known the
Thomas effect of collapse into a center in system of three
identical particles whose pair interactions have a zero range
[1] and the Efimov effect of the condensation of levels in
three particle spectrum and growth of their number as the
ratio of the pair scattering length to the range of pair forces
increases [2]. Note the investigation of threshold anomalies
in cross sections and phenomena of long-range characters
in [3,4].

In nuclear physics, for example, solutions to specific
physical problems are usually obtained by means of cum-
bersome numerical calculations. At the same time, the pres-
ence of model problems that admit solutions in an analytic
form could provide the possibility of performing an exact
analysis of many phenomena inherent in system of compli-
cated internal structure. A determination and investigation
of such model problems is the main objective of the present
study.

In model problem of light particle scattering on two
heavy fixed centers analytic solutions demonstrate how the
new resonances appear in three-body system. They show
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that positions and widths of these resonances depend on
distance between two centers.

Analytic solutions for the problem of light particle scat-
tering on two heavy particles are found if two associated
simplifications are acting in the system [5]:
- the limit of ζ = m/M → 0, wherem - mass of light
particle andM - mass of heavy particles, identical for sim-
plicity;
- and pairti-matrices have a separable form (i - number of
pare):ti = |νi > ηi < νi|.

This model is used for description of resonance scat-
tering in system where the light particle is a neutron and
two nuclei are placed in fixed centers.

In the case when two-body neutron-nucleous scattering
amplitudes have the resonance Breit-Wigner’s form ana-
lytic solutions are also obtained and three-body scattering
amplitudes manifest the resonance behavior, too.

Moreover, solutions for amplitudes of neutron scatter-
ing on subsystem of two fixed heavy nuclei show that sets
of new resonance states appear in the three-body system. It
is remarkable that positions and widths of resonances de-
pend onb - distance between two heavy scatterer centers,
and there are values ofb when resonance widths come to
zero. It seems that these quasi-bound states must have very
big lifetimes.

The model of subsystem consisted of twoα-particles
taken as scatterer centers is considered to investigate neu-
tron and proton scattering amplitudes. The comparison of
their resonance states displays that some proton states are
situated on energy scale more than 0.8 MeV above the neu-
tron ones.

In this case the reactions of electron capture by proton
with emission of neutrino become possible. It gives cause
for consideration of neutrino generator model.
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The proposal of experiment is suggested to investigate
behavior, appearance and parameters of new three-body
resonances, for instance, with using of monocrystals un-
der high pressure and low temperature. Some applications
of the exact solution method interesting in physics are dis-
cussed.

2 Three-body problem with two-body
separable interactions

A mathematically rigorous solution to three-body prob-
lems was given by Faddeev [6]. The set of Faddeev equa-
tions for theT -matrix elements can be written in the form:

Ti, j = ti δi j +

∑

ti G0(Z) δ̄i,l Tl, j (1)

whereti = Vi+ViG0(Z)ti are pairt matrices associated with
pair interaction potentialsVi and determined in the space of
three particles, (i, j, l = 1, 2, 3), G0 - the Green’s function
for three free particles,Z is a parameter that characterizes
the problem and which corresponds toE - the total energy
of the three-particle system, and̄δi, j = 1 − δi, j. The total
T -matrix is the sum over the indicesi and j, T =

∑

Ti, j.
Let us consider the example of simple pair separable

potentialsVi = |νi > λi < νi| , whereλi is a pair cou-
pling constant. Sandwiched between free wave functions,
the operatorVi assumes the conventional form of a func-
tion of coordinates or momenta, depending on the choice
of representation for these wave functions. For such po-
tentials, pairti- matrices are completely determined in an
analytic form [7]

ti = |νi > ηi < νi|, (2)

where
η−1

i = λ
−1
i − < νi|G

+

0(E)|νi > . (3)

Sometimes, they are referred toηi as enhancement factors;
in this way, the similarity of the shapes of the potential and
amplitude and the dependence of the amplitude onλi and
the energy of the subsystem are emphasized.

In the common case short-range pair interactions can
be represented as sums of separable members

Vi =

∑

n

|←−ν i,n > λi,n <
−→ν i,n|, (4)

wheren can be a set of indices and contains the number
of separable member and also discrete quantum numbers
L, S , J.

In (4) overarrows point out the presence of spherical
function, for example

< −→ν i,n|q >= νi,n(q) = νi,n(q)| · Y M
L (q̂). (5)

Thereforet-matrix can be written in the form

ti =
∑

n,m

|←−ν i,n > ηi;n,m <
−→ν i,m|, (6)

where

η−1
i;n,m = δnmλ

−1
i,n− <

−→ν i,n|G0(E)|←−ν i,m > . (7)

For simplicity, we come back to simple form (2), sup-
posing that transition to the complicated form (6) does not
meet any difficulties.

IntroducingPi j matrix by form

Ti, j = ti δi j + |νi > ηi Pi, j η j < ν j| , (8)

we arrive at

Pi, j = Λi, j +

∑

Λi,k ηk Pk, j , (9)

whereΛi, j =< νi|G+0(E)|ν j >, i , j .
It is important thatΛi,i ≡ 0 - i.e. the diagonal ele-

ments vanish identically. This distinctive feature of Fad-
deev equations ensures the compactness of kernels in re-
spective integral equations and the existence and unique-
ness of solutions. Indeed, the singularities of the Born terms
become weaker upon successively iterating Faddeev equa-
tions, while the kernels of the integral equations become
normalizable; therefore, solutions exist and are obtainable
[6,8].

In common case (see, for example [5]) when the two-
body interaction between heavy particles exists we can de-
termine ”the nuclear equation”

P1,1′ = V1,1′ +

∑

1”

V1,1” η1” P1”,1′ . (10)

Here the effective potential between heavy particles

V1,1′ =

∑

k,l=2,3

Λ1,k ηk (δkl + Mk,l) ηl Λl,1′ , (11)

can be determined by means of ”electronic equation”:

Mk,l = Λk,l +

∑

ρ=2,3

Λk,ρ ηρ Mρ,l. (12)

Above-mentioned terms are given from the well-known
Born-Oppenheimer approximation. This approximation is
the assumption that the electronic motion and the nuclear
motion in molecules can be separated. The electronic wave-
function depends upon the nuclear positionsR2,3 but not
upon their velocities, i.e., the nuclear motion is so much
slower than electron motion that they can be considered to
be fixed.

In the case of fixed heavy centers we have to solve only
Eq. (12), which gives total description of light particle scat-
tering amplitude on these centers [5].

3 The scattering problem on two heavy
centers

Let us now consider the problem where one of the parti-
cles is light, while the other two are heavy. Specifically,
we examine the limiting case ofζ = m/M → 0.
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The total energy of the system isE =
∑

p2
0i/2mi =

p2
0/2m , wherep01 = p0 - being initial momentum of the

light particle. The heavy particles are labeled with the in-
dices of 2 and 3. For the sake of simplicity, we assume
them to be identical.

In the limit ζ → 0, the form factors for the pair po-
tentials of interaction between the light particle and any of
the heavy particles ceases to depend on the heavy-particle
momentum:ν(q12 → ν(p), ν(q13 → ν(p), sinceq12 =

(m2p1 − m1p2)/(m2 + m1) → p1 = p and, accordingly,
q13 = (m3p1 − m1p3)/(m3 + m1)→ p1 = p.

The enhancement factors in thet matrices for these
pairs become functions only from the initial energy of the
light particle - that is, they are functions of its initial mo-
mentum:η2 = η3 → η(p0).

In the limit ζ → 0 the expression forΛk,l in ”electronic
equation” (12) is

Λ2,3 = 2m
ν2(p)ν3(p)

p2
0 − p2 + i0

≡ f (p0, p). (13)

Taking into account the conservation of total momentum
in three-particle systemp = −p2 − p′3 , we represent the
potentialΛ2,3 in the integral form

Λ2,3(p2, p′3) =
∫

dr exp(irp2)J2,3(p0; r) exp(irp′3), (14)

where

J2,3(p0; r) =
∫

dp exp(irp) f (p0; p). (15)

In Eq. (14), we label heavy-particle variables at the exit
from interaction region with a prime; at the entrance, they
carry no primes. We will use this notation below.

Then we determine the Fourier transform of the solu-
tion Mk,l ≡ Mk,l(p0; pkp′l )→ Mk,l(r, r′), namely

Mk,l(r, r′) =
∫

dpkdp′l Mk,l exp(ir′p′l − irpk). (16)

Take into consideration the relation (14) we obtain from
Eq. (12) equation

Mk,l(r, r′) = Jk,l(p0; r)δ(r + r′) +

+

∑

ρ

Jk,ρ(p0; r)Mρ,l(−r, r′). (17)

Since the delta function removes the integration on the
right-hand side of (17), the equation forMk,l(r, r′) is re-
duced to the extremely simple form.

As a result, the solution of light particle scattering prob-
lem on two heavy centers can be represented in analytical
form

Mi, j(r, r′) =
1

I − Bi,i(r)
Ki, j(r, r′), (18)

wherei, j = 2, 3 - numbers of heavy centers,r - the radius-
vector according to the position of initial scattering center
andr′ - the radius-vector according to the position of final
scattering center in c.m. of system.

Elements of diagonal matrixBi,i (Bi, j = 0 if j , i) are

Bi,i(r) =
∑

k=2,3

Ji,k(p0; r)ηk(p0)Jk,i(p0;−r)ηi(p0). (19)

Elements of matrixKi, j(r, r′) are given as

Ki,i(r) =
∑

k=2,3

Ji,k(p0; r)ηk(p0)Jk,i(p0;−r) δ(−r + r′), (20)

if j = i, and

Ki, j(r) = Ji, j(p0; r) δ(r + r′), (21)

where j , i .
And we can write out two modes of solutionMi, j(r, r′)

Mi, j(r, r′) = M+i, j(r) δ(r + r′) + M−i, j(r) δ(−r + r′), (22)

where

M+i, j(r, p0) =
1

I − Bi,i(r)
Ji, j(r, p0), (23)

and

M−i,i(r, p0) =
1

I − Bi,i(r)
Bi,i(r, p0)η−1

i (p0), (24)

asM−i, j = 0 if j , i.
In the case when pair potentials are sums of separable

terms, expressions (13) - (24) have to be considered as the
matrix expressions with respect to additional indices.

We assume above that heavy particles are strictly fixed
at pointsR2 andR3 = R2+b. We introduce the wave func-
tions for these centers of identical heavy particles in the
form [5]

Ψi(r,Ri) = C exp

[

−
(r − Ri)2

2∆2

]

, (25)

for heavy particle is localized in a bounded region centered
at the pointRi, i = 2, 3.

The obvious normalization condition< Ψi|Ψi >= 1
givesC2

= (∆2π)−3/2. In order to determine the physical
scattering amplitude, it is necessary to sandwich the ex-
pression forT - matrix between the wave functions for ini-
tial and final states of the system< Ψin|T |Ψ f > .

The structure of these functions is obvious, for exam-
ple,< Ψin| =< χ1Ψ2Ψ3| , whereχ1 is the free wave function
for the light particle.

It should be emphasized that positions of heavy parti-
cles are specified in the c.m. frame of all three particles.
This concerns their coordinates and momenta. It is then
obvious thatR2 = −b/2 andR3 = b/2.

The scattering amplitude of light particle on two heavy
centers is determined by the form:

f (b; p0) =
∑

i, j=2,3

< Ψi(r,Ri)|Mi j(r, r′)|Ψ j(r′,R j) > . (26)

In the limit∆→ 0, this amplitude comes to the expres-
sion

f (b; p0) = M(b/2, p0) + M(−b/2, p0), (27)

whereM(b/2) = M+(b/2) + M−(b/2) as following from
(23) and (24).
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3.1 Zeros of D-function

It is clear that zeros ofD-function, whereD = det(I − B),
correspond to poles of three-body amplitudeM(b/2; p0)
in complex plane ofp0 (see (18)). And we can determine
paths of motion of these zeros in complex plane of energy.

For example, we can take the simple pair potential of
Yamaguchi form acting inS -wave which has form-factors

ν(p) = Const/(1+ p2/β2) , (28)

whereConst =
√

8π/(2mβ), β - the inverse range of nu-
clear forces. In this case the enhancement factor is

η−1(p0) = λ−1
+ (1− ik)−2 , (29)

k = p0/β. We take~ = 1, c = 1, for simplicity.
Then we can get

J = 2
exp(−b̃) − exp(ib̃k)

b̃(1+ k2)2
+

exp(−b̃)
(1+ k2)

, (30)

whereJ = Ji j = J ji, b̃ = bβ/2.
We note that, by definition, the coupling constantλ

is real-valued. This follows from the unitarity and micro-
causality conditions even at the two-particle level [10]. This
leads to a relation between the coupling constantλ and the
coordinates of those pointskres = kR + ikI in the complex
plane ofk

[1 + k2
R − k2

I ]2 − 4k2
Rk2

I

λ
=

[

1+ k2
R − k2

I

]

exp(−b̃) +

+
exp(−b̃) − exp(−kI b̃) cos(kRb̃)

b̃/2
−

[

1− k2
I

]2
, (31)

and

−
2kI(1+ k2

R − k2
I )

λ
= 1− kI

(

1+ exp(−b̃)
)

+

+

exp
(

−kI b̃
)

sin
(

kRb̃
)

(

kRb̃
) . (32)

Owing to this, the value ofkI = 0 is forbidden for any
kR , 0 and realλ , 0, and of course positivẽb.

This means that the zeros of the functionD(b̃, k) cannot
intersect the real axis of the complex plane ofk, or, in other
words, they cannot be in the physical region of scattering.

The problem can be further simplified if the pair in-
teraction between the light particle and each of the fixed
centers is taken to be contact.

The corresponding solutions follows from (30) upon
going over to the limitβ→ ∞ and fixed value of the quan-
tity κ0; EB = −κ

2
0/2m. The functionD then takes the form

D = 1+ 2
exp(ibp0/2)
b(κ0 + ip0)

. (33)

Zeros of D-function give the values ofxR andxI , where
x = bp0/2, x = xR + ixI , can be found from the algebraic
equations [5]:

xI = x0 + cos(xR) exp(−xI), (34)

xR = − sin(xR) exp(−xI),

wherex0 = bκ0/2. In the case ofxR = 0 the relationship
analogous (34) is well-known [3].

In the last case,

xI = x0 + exp(−xI), (35)

xI > x0 - that is, the three particle system is always bound
more strongly than the two-particle subsystem. This is the
reason why the light particle can be bound by the system of
two fixed centers even if it is underbound by one isolated
center [3].

The existence condition for a bound three-particle state
is x0 > −1 , which is possible at anyλ obeying the inequal-
ity λ ≤ 0 but at specific values ofb that satisfy the recursive
relation (35).

As for quasistationary states, the values ofxR and xI

can be found for them from the set of equations (34). Here,
the conditionxI < 0 always holds, so that the resonance
poles always lie in the lower half-plane of the complex
plane ofx.

It is remarkable that energies and widths of three-body
resonances depend on parameterb - the distance between
the scattering centers. This dependence is an important fea-
ture of the three-body system. It is clear that bound, vir-
tual and quasi-stationary states will be moving in complex
plane ofp0 with changing of distance between scattering
centers [5].

Note that in common case, for example, of more com-
plicated pair potentials inS -wave or of higher partial waves,
zeros of functionD can intersect the real complex plane of
k. That is the some of resonance points can getkI = 0 but
kR , 0 at specific values ofb.

4 Corrections to exact analytical solutions

Supposing thatMk,l in (7) and (12) are already defined (see
above Sect. (3)) we resort to estimation of corrections to
exact analytical solutions.

In order to determine these corrections one can use iter-
ative method within the framework of Faddeev equations.
Note that the convergence of iterative procedure has an ex-
ponential behavior, that is more fast in comparison with the
ordinary perturbation theory [8].

Also the method of coupling constant evolution may be
used to find corrections to energies of bound or resonant
states [10,11].

First of all we can find three-body wave functions. Fol-
lowing (9) and Lippmann-Schwingerequations we get wave
functions in continuum

|Ψ >=
∑

j

(

|φi > δi j +G0|νi > ηiPi jλ j < ν j|φ j >
)

, (36)

where|φi > - two-body wave functions.
In the case of spectrum we can connect the wave func-

tion of three-body state with the residue ofT -matrix in the
pole

T (E)E→En →
V |Ψn >< Ψn|V

E − En
. (37)
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According to (8), (18) and (19), for instance, inS -wave
this amounts to

|Ψn >= G0

∑

i

|νi > Rn , (38)

whereRn =
√

(En − E2,res)/(2J) to the accuracy of phase.
HereE2,res is the energy whereη−1

i = 0. This energy
corresponds to the two-body ”resonance” state - it may be
bound or virtual, or quasi-stationary one.

MeanwhileEn = En(b/2; p0) corresponds to the res-
onance state of three-body system.J = Ji j(En, b/2) =
J ji(En, b/2) as fixed heavy particles are identical.

Now we know solutions of our simple model, i.e. ele-
ments ofT -matrix, wave functions and energies of states.
After that we can construct scheme for determination of
corrections.

For example, in framework of coupling constant evolu-
tion method we can consider the evolution of system with
increasing of small parameterζ. Resonance energy shifts
are determined by equation

dEn

dζ
=
< Ψn|Hζ |Ψn >

< Ψn|Ψn >
, (39)

whereHζ = dH/dζ, and shifts of wave functions by

d|Ψ >
dζ

=
1

E − H

(

Hζ − Eζ
)

|Ψ > , (40)

Eζ = dE/dζ [10,11]. Exact analytical solutions are taken
here as boundary conditions forH, En and |Ψ > at limit
ζ → 0.

Moreover, we can take into account small motions of
heavy centers in expression (25). Decomposing expression
(26) in respect of∆ , 0 (but∆/b << 1) one can obtain that
the amplitude in resonance point∼ ∆−1, and corrections to
resonance energy and width are linear with∆/b << 1.

PuttingWk,i = Tk,i − tiδki, we can write expressions

W1,1 =

∑

k=2,3

t1G0(E)Wk,1,

Wk,1 = |νk > ηk ·
(

ρk,1 + Fk,1
)

, (41)

wherek , 1, and

ρk,1 =< νk |G0(E) · T1,1,

Fk,1 =

∑

l=2,3

Mk,l · ηl · ρl,1. (42)

Then we can take a pair interaction between two heavy
centers in arbitrary form not only separable one. Writing
W11 = V1 · W̃11, we obtain

W̃11 = Ve f
11 + Ve f

11G−1
1 G0W̃11 , (43)

where

Ve f
11 =

∑

k,l,1

G1|νk > ηk

(

η−1
k δkl + Pkl

)

ηl < νl|G0t1 . (44)

In the case whenV1 has a separable form, equations (43)
and (44) can be reduced to (10) and (11).

Analytic solutions to the problem of light particle scat-
tering on pair of interacting heavy particles are found in
limit ζ → 0 and the method is stated in detail in [5].

It turns out that off-shell effects of light particle rescat-
tering on heavy particles are contained only in the effective
potential (11). That is, off-shell effects in the interaction of
heavy particles are absorbed in the equation for the ampli-
tude (10), where the effective potential is an on-shell quan-
tity.

5 The scattering problem with two-body
amplitudes of Breit-Wigner form

Now we consider the problem of neutron scattering on two
fixed centers if the two-body scattering amplitudes have
the Breit-Wigner resonance form:

ti = −
1
πρ(E)

Γ2/2
E − ER,2 + iΓ2/4

. (45)

The energy and width of this two-body resonance can be
written through real and imaginary parts of resonance wave
number:ER,2 = (p2

R,2 − p2
I,2)/2m andΓ2 = 2|pR,2pI,2|/m.

Here, index 2 marks two-body parameters (below index 3
will mark three-body parameters).

It is known that the residue of resonant amplitude comes
to factorization form in the region near to point of polar
singularity. In this region the representation (37) can be
transformed to separable form (2). It is convenient to deter-
mine parameters of two-body separable potential in terms
of resonance energy and width of two-body scattering.

We can normalize form-factors of two-body potential
so that

ν(p) ≈
√

Γ2/2πρ(E) , (46)

if p ≈ pR,2, and take hold of

η−1
i = −(E − ER,2 + iΓ2/2) (47)

instead of simple form (3).
So, exact solutions can be obtained in the case when

pair t-matrices have Breit-Wigner resonance form, too. For
isolated pair resonance with energyER,2 and widthΓ2 we
can get elements ofJ-matrix from (13) - (15) in analytic
form.

Therefore, zeros ofD-function are determined by equa-
tion

(

E − ER,2 + i
Γ2

2
− J

)

·

(

E − ER,2 + i
Γ2

2
+ J

)

= 0. (48)

Then, introducing real and imaginary parts ofE = Eres,3 =

ER,3 − iΓ3 whenD = 0 andJ = JR + iJI , we write out two
branches of three-body resonances:

ER,3 = ER,2 − JR, Γ3 = Γ2 − 2JI , (49)

and
ER,3 = ER,2 + JR, Γ3 = Γ2 + 2JI . (50)
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Note thatJ = J(b/2, p0) has the oscillating behavior.
For example, form-factors of two-body potentials in (46)
acting inS -wave give

Ji j = J ji = J = −Γ2
exp(ibp0/2)

bpR,2
. (51)

Therefore, every branch contains sets of three-body reso-
nances.

Some of them are situated at energy scale above the en-
ergy of two-body resonance, and others - under this energy.
Some of three-body resonances will have more narrowed
width, others - more widen

Remarkably that there are several points where func-
tion Γ3 = Γ3(b/2, p0) = 0. It means that lifetime of reso-
nance in these points becomes infinite. It is possible only
in simple model, although in real situation lifetime of reso-
nances can be enlarged substantially if distortions are sup-
pressed.

Note, there are no principal difficulties to include more
complicated forms of two-body separable potentials and
other partial components into the model.

At next subsections we consider the model of scatterer
subsystem which consists of nuclei in the capacity of fixed
centers. It is important that these nuclei have resonance
interaction with neutron. And their two-body resonances
give rise to three-body resonances. We investigate three-
body resonance positions in dependence onb - distance
between centers. And we indicate specially points where
imaginary part of resonance energy comes to zero.

5.1 The scattering of neutron on two fixed
α-particles

At first we consider the low energy resonance scattering of
neutron on subsystem of two fixedα-particles.

It is known that two-bodyn, α-system does not have
bound or resonant states inS -wave at low energies as re-
pulsive forces act between nucleon andα-particle in this
case. However, there are resonances in other partial waves.

The respective amplitudes have resonances in theP-
wave componentsPJ

L,S , where the total momentumJ =
3/2, 1/2, orbital - L = 1, andS = 1/2. We take into ac-
count the distinct resonanceP3/2

1,1/2 which has parameters
ER,2 ≈ 0.9 MeV andΓ2 ≈ 0.6 MeV [12].

This resonance can be described satisfactorily by the
simple separable potential, for instance, involving the form
factors (see (5))

νP(p) = Const
p/β

1+ p2/β2
, (52)

which give rise to

η−1
P = λ

−1
P +

1− 2k
(1− ik)−2

, (53)

whereηP = η
3/2
1,1/2(k), k = p0/β, andConst =

√

8π/(2µβ).
The two-body amplitude has the pole at the pointk =

kres,2 , whereη−1
P (kres,2) = 0.

The resonance parameters,ER,2 andΓ2, can be associ-
ated with potential parametersλP andβ. So, there are two
relationships:λP = −(1 + kI,2) andk2

R,2 = −kI,2(1 + kI,2),
wherekres,2 = ±kR,2 + ikI,2. It follows that the values of
kI,2 = −0.0256,kR,2 = 0.158, from which we can deter-
mine parameters of the nuclear potential:λP = −0.974 and
β = 1.175f m−1.

Moreover, we can describen, α-scattering inS -wave
with simple separable potential (28), too. In this case (see
(29)) the positive coupling constant gives the repulsive char-
acter of theS -wave interactionλS = 15,βS = 1.4 f m−1 .

Note that the enhancement factor in (53) can be pre-
sented in form similar to (47)

η−1
P = −(E − Eres,2) · AP(E, Eres,2) , (54)

whereEres,2 = ER,2 − iΓ2/2

AP(E, Eres,2) =
∫

dp
νP(p)ν∗P(p)

(E − Ep + i0)(Eres,2 − Ep)
, (55)

andEp = p2/2m.
Thus, the matrixJ (see (15)) contains submatrix in re-

spect of indices of two-body partial waves -S andP:

J =

(

0 J12
J21 0

)

, J12 = J21 = JS P =

(

JS S JS P

JPS JPP

)

.

It is obvious that we can writeJS P-element as

JS P(p0; r) =
∫

dp exp(irp)
νS (p)νP(p)
E − Ep + i0

, (56)

and other elements ofJS P-submatrix in analogous form.
ForS -wave components ofB-matrix elements we have

BL,L′ =

∑

K

JL,K ηK(p0)JK,L′ ηL′ (p0) , (57)
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Fig. 1. D-function of neutron scattering amplitude on (α, α) sub-
system. The red color marksRe(D), and the blue one -Im(D).
Graphs A and B show curves withk = p0/β = 0.17 and
k = 0.1537, accordingly. In the latter case the point where
Re(D) = Im(D) = 0 corresponds to resonance state withΓ3 = 0.
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whereL, L′,K = S , P.
Then it is not difficult to determineD-function and cal-

culate values of resonant energyEres in three-body system
andb - distance between two heavy centers. Curves cor-
responding to real and imaginary parts ofD-function are
shown in Fig 1.

In framework of the method we obtained exact analytic
solutions for ”quasi-bound” states when the widthsΓ3 = 0.
It is remarkable that near this pointspI,3 may cross zero
and be even positive (see Fig 1, B). Our calculations con-
cerned a region of low energy only. Table 1 demonstrates
values of resonance energies -ER,3 and parametersbk - dis-
tance between fixedα-particles whenΓ3 = 0.

Our calculation gives two resonance states withΓ3 = 0,
which named here as ”quasi-bound” states.

Table 1. ”Quasi-bound” states (withΓ3 = 0 ) of neutron and
proton in model of two fixedα-particles.ER,3;k are given in MeV
andbk - in f m, k - number of resonance state.

Three-body system ER,3;1 b1 ER,3;2 b2

n + α, α 0.88 18 1.37 31
p + α, α 1.78 14 2.36 24

Then we turn our attention to the proton scattering on
subsystem of two fixedα-particles.

It is known that two-bodyp, α scattering amplitude has
resonance in thisP-wave too, with parameters:ER,2 ≈ 1.9
MeV andΓ2 ≈ 1.5 MeV [12]. For comparison between
parameters of (n, α, α) and (p, α, α) resonances the calcu-
lation data are shown in Table 1.

The estimations of (p, α, α) resonance parameters have
been performed on the base of two-body resonance inP-
wave without ordinary repulsive Coulomb force between
the proton andα-particles inS -waves and between two
alpha-particles.

As a rule [3,11] repulsive Coulomb forces result in
widening of distance between centers and shifting of three-
body resonance levels to higher energies. It is important
that the difference of 1 MeV or more between resonance
energies of (p, α, α)- and (n, α, α)-systems is remaining.

5.2 The neutron resonance scattering on
subsystem of two fixed nuclei

Now we consider the cases when more heavy nuclei than
α-particles are fixed in two-body scatterer subsystem. Sub-
systems with nuclei of atoms of oxygen and magnesium
are interesting objects because they have similar features
of interaction with neutron asα-particle.

The fact is that two-body scattering amplitudes of neu-
tron on16O as well as on24Mg haveP-wave resonances
at low energy region. Moreover, in these cases repulsive
forces act inS -wave like inN, α-particle scattering ampli-
tude.

We take into account only the lowest isolated neutron-
nucleus resonance states in two-body systems. The two-
body resonance parameters areER,2 = 435 keV,Γ2 = 40

keV in the case of (n,16 O), andER,2 = 84 keV,Γ2 = 13
keV in the case of (n,24 Mg).

As above we describe neutron-nucleus scattering inS -
wave with simple separable potential (28) with the same
positive coupling constantλS = 15 andβS = 1.4 f m−1 .

Two-body resonances inP-wave can be described with
separable potentials involving the form factors (52), where
potential and resonance parameters have to be coordinated
with each other. It is resulted inλP = 0.999,βP = 6, 076
f m−1 in case of16O, and inλP = 0.998,βP = 1, 635 f m−1

in case of24Mg.
Then we determine three-body quantities following the

scheme of previous subsection. The main aim is the deter-
mination ofD-function and positions of zeros of this func-
tion.

Calculations give the points whereΓ3 = 0. Energies
of these quasi bound states of neutron in subsystem of two
fixed nuclei and distances between these centers are shown
in Table 2.

Table 2. Neutron ”quasi-bound” states (withΓ3 = 0) in model
of two fixed nuclei.ER,3;k are given in keV andbk - in f m, k -
number of resonance state.

Three-body system ER,3;1 b1 ER,3;2 b2

n + (16O,16 O) 231 10.53 286 12.18
n + (24Mg,24 Mg) 82 63.27 117 70.37

It should be noted that nuclei with more heavy mass
taken as fixed centers give rich and complicated pictures
of three-body resonance states.

6 The model of neutrino generator

Note that the position of two-bodyp, α - resonance on en-
ergy scale is nearly 1 MeV above the position ofn, α - res-
onance. Moreover, the resonances in (p, α, α)-system have
the energies more than 1 MeV above energies of corre-
sponding resonances in (n, α, α)-system (see Table 1).

Thus, if certain systems exist or can be made to keep
these resonance states together the observation of transi-
tions between these states becomes possible.

It seems that this kind of systems can be formed during
the evolution of massive cold stars, for example, in depth
of white dwarfs. Indeed, the core inside of massive star
can transform into solid crystalline body under very high
pressure [13].

In this connection we consider the model of ideal crys-
tal where nuclei are fixed in nodes of the lattice. It is sup-
posed that distances between nodes of this perfect crys-
talline lattice can be changed and become small, for in-
stance, as a result of very big pressure from outside [14].

Now we consider the crystal model of stellar Helium
core. This simple model may be interesting in astrophysics
because it can play the role of low energy neutrino genera-
tor. The fact is that in this model the three-body resonance
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energies and widths are functions not only of two-body in-
teraction parameters but also of lattice parameterb - dis-
tance between nodes.

It is very important that there are some values of pa-
rameterbk for which certain widths of three-body reso-
nance states are close to zero (see, Table 1).

For example, a system consisting of one neutron and
two fixedα-particles has the resonance energyER,3 ≈ 1.37
MeV with Γ3 ≈ 0 whenb ≈ 31 f m. The analogous system
consisting of one proton and two fixedα-particles has the
resonance too, with the energyER ≈ 2.4 MeV and small
width near thisb.

We suppose that distance between nodes ofα-particle
crystalline latticeb is near tob1 = 31 f m.

Here one might ask: How can neutron appear in the
lattice?

Note that the part of protons can penetrate inside crys-
tal from external surroundings if they have enough energy
for channeling in the lattice. Furthermore, some protons
can be inside of lattice ever since the time of lattice forma-
tion [13].

Then, owing to reactionp + e− → n + ν protons can
turn into neutrons because it is the exoenergic reaction. So,
neutrons appear in the (n, α, α)∗- quasi-bound states.

Neutrinos with energyEν ≈ 0.2 MeV are produced in
this reaction, after what they leave the lattice.

This (n, α, α)∗-quasi-bound state hasΓ3 ≈ 0 and very
big lifetime if b ≈ 31 f m. Besides, the decay of neutron is
suppressed in the crystal.

In the case of distortions the condition in the lattice for
existence of this neutron states is not supported and via
β-decay the neutron turns into proton, producing electron
and antineutrino.

So, we assume that the following reaction can be stim-
ulated in the crystalline lattice:

(p, α, α)∗2.36MeV + e− → (n, α, α)∗1.37MeV + νe , (58)

and then

(n, α, α)∗1.37MeV → n+ (α, α)→ p′ + e− + ν̄e + (α, α). (59)

Here, (∗) marks the quasi-bound state of nucleon in (N, α, α)
system, and its resonance energy is shown in subscript.
Note, thatEp′ ≈ Ep − 2.3 MeV.

The lattice distortions may be created periodically by
satellites of star. As a result the star will generate clouds of
neutrinos spreading outside in space.

The situation with neutrinos generation can be similar
in the cases of stellar crystalline cores of16O and especially
24Mg, and more heavy nuclei.

7 Conclusion

The exact analytical solutions have been considered above
in three-body problems, when one light particle interacts
with subsystem of two heavy particles fixed in coordinate
space. It is important that solutions of problem can be fol-
lowed out, i.e. obtained in analytic forms.

These solutions can show the main three-body char-
acteristics, for example, amplitudes, resonance states and
their dependences onb - distance between scatterer cen-
ters. Thus, exact solutions can be used as principle approx-
imations in many problems of three-body quantum me-
chanics.

It would be remarkable to create a setting, whereb -
distance between nodes, could be changed in order to in-
vestigate properties of neutron resonance scattering on dif-
ferent monocrystals. Of course, this setting should operate
with special monocrystals kept under very high pressures
and very low temperatures.

In this setting transitions between three-bodyp andn
resonance states in monocrystal could be determined. It
means to discover new neutrino generator and possibly the
new mode of star cooling without nuclear reactions.

The analogous model of exotic particle interactions with
the nodes of quark lattice or substructure may be interest-
ing. In this case huge mass of heavy neutrinos or exotic
neutral particles generated by star or galaxy center would
be expanding and increasing far out to the galaxy frontiers
and cripple the motion of satellites. Similar models might
be useful for solving the problem of dark matter.

In any case it is clear that three-body effects and three-
body resonances as well as quantum mechanics of three-
body systems on the whole will give an important contri-
bution in modern astrophysics.

References

1. L.H. Thomas, Phys. Rev.47, (1935) 903
2. V. Efimov, Physics of Atomic Nuclei12, (1970) 589
3. A.I. Baz’, Ya. B. Zeldovich, and A.M. Perelomov,

Scattering, Reactions and Decay in Nonrelativistic
Quantum Mechanics (Nauka, Moscow, 1971) 465
pages

4. F.M. Pen’kov and N.Zh. Takibayev, Physics of Atomic
Nuclei57, (1994) 1232

5. N.Zh. Takibayev, Physics of Atomic Nuclei78, (2008)
405

6. L.D. Faddeev,Mathematical Aspects of the Three-
Body Problem in Quantum Scattering Theory (Davey,
New York, 1965)

7. R.G. Newton,Scattering Theory of Waves and Par-
ticles (Springer-Verlag, Berlin-Heidelberg-New York-
Tokyo, 1982) 743 pages

8. S.P. Merkur’ev, L.D. Faddeev,Quantum Mechanics
of Three-Body Systems (Nauka, Moscow 1987) 400
pages

9. N.Zh. Takibayevet al., Vestnik KazNU6, (2008) 76
10. D.A. Kirzhnits, G.S. Kruchkov, N.Zh. Takibayev, Par-

ticles and Nuclei10, (1979) 741-783
11. N.Zh. Takibayev, Physics of Atomic Nuclei68, (2005)

1147-1152
12. F. Ajzenberg-Selone, Nucl. Phys.A 490, (1988) 1
13. D.A. Kirzhnits, Zh.Eksp.Teor.Fiz.38, (1960) 503-510
14. V.A. Volodin, D.A. Kirzhnits, Zh.Eksp.Teor.Fiz.

Pisma.13, (1971) 450-453

05028-p.8


