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Abstract. The clothing procedure, put forward in quantum field theory (QFT) by Greenberg and Schweber, is
applied for the description of nucleon–nucleon (N–N) scattering. We consider pseudoscalar (π and η), vector (ρ
and ω) and scalar (δ and σ) meson fields interacting with 1/2 spin (N and N̄) fermion ones via the Yukawa–type
couplings to introduce trial interactions between ”bare” particles. The subsequent unitary clothing transforma-
tions (UCTs) are found to express the total Hamiltonian through new interaction operators that refer to particles
with physical (observable) properties, the so–called clothed particles. In this work, we are focused upon the
Hermitian and energy–independent operators for the clothed nucleons, being built up in the second order in the
coupling constants. The corresponding analytic expressions in momentum space are compared with the separate
meson contributions to the one–boson–exchange potentials in the meson theory of nuclear forces. In order to
evaluate the T matrix of the N–N scattering we have used an equivalence theorem that enables us to operate in
the clothed particle representation (CPR) instead of the bare particle representation (BPR) with its huge amount
of virtual processes. We have derived the Lippmann–Schwinger(LS)–type equation for the CPR elements of the
T–matrix for a given collision energy in the two–nucleon sector of the Hilbert space H of hadronic states and
elaborated a code for its numerical solution in momentum space.

1 Introductory remarks

We know that there are a number of high precision, boson–
exchange models of the two nucleon force VNN , such as
Paris [1], Bonn [2], Nijmegen [3], Argonne [4], CD
Bonn [5] potentials and a fresh family of covariant one–
boson–exchange (OBE) ones [6]. Note also successful treat-
ments based on chiral effective field theory [7,8], for a
review see [9].

In this talk, we would like to draw attention to the first
application of unitary clothing transformations [10,11] in
describing the nucleon-nucleon (N–N) scattering. Recall
that such transformations W, being aimed at the inclusion
of the so–called cloud or persistent effects, make it pos-
sible the transition from the bare–particle representation
(BPR) to the clothed–particle representation (CPR) in the
Hilbert space H of meson–nucleon states. In this way, a
large amount of virtual processes induced with the meson
absorption/emission, the NN–pair annihilation/production
and other cloud effects can be accumulated in the creation
(destruction) operators αc for the ”clothed” (physical) me-
sons and nucleons. Such a bootstrap reflects the most sig-
nificant distinction between the concepts of clothed and
bare particles.
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In the course of the clothing procedure all the gener-
ators of the Poincaré group get one and the same sparse
structure onH [10]. Here we will focus upon one of them,
viz., the total Hamiltonian

H = HF(α) + HI(α) ≡ H(α) (1)

with

HI(α) = V(α) + mass and vertex counterterms, (2)

where free part HF(α) and interaction V(α) depend on cre-
ation (destruction) operators α†(α) in the BPR , i.e., re-
ferred to bare particles with physical masses [11], where
they have been introduced via the mass–changing Bogoliu-
bov–type UTs. To be more definite, let us consider fermions
(nucleons and antinucleons) and bosons (π–, η–, ρ–, ω–
mesons, etc.) interacting via the Yukawa-type couplings
for scalar (s), pseudoscalar (ps) and vector (v) mesons (see,
e.g., [2]). Then, using a trick prompted by the derivation of
Eq. (7.5.22) in [12] to eliminate in a proper way the vector–
field component ϕ0

v , we have V(α) = Vs + Vps + Vv with

Vs = gs

∫
dx ψ̄(x)ψ(x)ϕs(x) (3)

Vps = igps

∫
dx ψ̄(x)γ5ψ(x)ϕps(x) (4)
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Vv =

∫
dx

{
gvψ̄(x)γµψ(x)ϕµv(x)

+
fv

4m
ψ̄(x)σµνψ(x)ϕµνv (x)

}

+

∫
dx

{
g2

v

2m2
v
ψ̄(x)γ0ψ(x)ψ̄(x)γ0ψ(x)

+
f 2
v

4m2 ψ̄(x)σ0iψ(x)ψ̄(x)σ0iψ(x)
}
, (5)

with the boson fields ϕb and the fermion field ψ, where
ϕ
µν
v (x) = ∂µϕνv(x) − ∂νϕµv(x) the tensor of the vector field

included. The mass (vertex) counterterms are given by Eqs.
(32)–(33) of Ref. [11] (the difference V0(α) - V(α) where
a primary interaction V0(α) is derived from V(α) replacing
the ”physical” coupling constants by ”bare” ones).

The corresponding set α involves operators a†(a) for
the bosons, b†(b) for the nucleons and d†(d) for the antin-
ucleons. In their terms, e.g., we have the free pion and
fermion parts

HF(α) =

∫
dkωka†(k)a(k)

+

∫
dp Ep

∑

µ

[
b†(p, µ)b(p, µ) + d†(p, µ)d(p, µ)

]
(6)

and the primary trilinear interaction

V(α) ∼ ab†b + ab†d† + adb + add† + H.c. (7)

with the three-legs vertices. Here ωk =

√
m2

b + k2 (Ep =√
m2 + p2) the pion (nucleon) energy with physical mass

mb(m), µ the fermion polarization index.
We have tried to draw parallels with that field–theoretic

background which has been employed in boson–exchange
models. First of all, we imply the approach by the Bonn
group [2,5], where, following the idea by Schütte [13],
the authors started from the total Hamiltonian (in our no-
tations),

H = HF(α) + V(α) (8)

with the boson-nucleon interaction

V(α) ∼ ab†b + H.c. (9)

2 Analytic expressions for the
quasipotentials in momentum space

As shown in [10], after eliminating the so-called bad terms1

from V(α) the primary Hamiltonian H(α) can be repre-
sented in the form,

H(α) = KF(αc) + KI(αc) ≡ K(αc) (10)

1 By definition, they prevent the bare vacuum Ω0 (a|Ω0〉 =

b|Ω0〉 = . . . = 0) and the bare one–particle states |1bare〉 ≡ a†|Ω0〉
(b†|Ω0〉, . . .) to be H eigenstates.

The free part of the new decomposition is determined by

KF(αc) =

∫
dkωka†c(k)ac(k)

+

∫
dp Ep

∑

µ

[
b†c(p, µ)bc(p, µ) + d†c (p, µ)dc(p, µ)

]
(11)

while KI contains only interactions responsible for phys-
ical processes, these quasipotentials between the clothed
particles, e.g.,

K(2)
I (αc) = K(NN → NN) + K(N̄N̄ → N̄N̄)

+ K(NN̄ → NN̄) + K(bN → bN) + K(bN̄ → bN̄)

+ K(bb→ NN̄) + K(NN̄ → bb) (12)

In accordance with the clothing procedure developed in [10]
they obey the following requirements:

i) The physical vacuum (the H lowest eigenstate) must
coincide with a new no–particle state Ω, i.e., the state that
obeys the equations

ac(k) |Ω〉 = bc(p, µ) |Ω〉 = dc(p, µ) |Ω〉 = 0,

∀ k, p, µ (〈Ω|Ω〉 = 1) . (13)

ii) New one-clothed-particle states |k〉c ≡ a†c(k)Ω etc. are
the eigenvectors both of KF and K,

K(αc)|k〉c = KF(αc)|k〉c = ωk |k〉c (14)

KI(αc)|k〉c = 0 (15)

iii) The spectrum of indices that enumerate the new op-
erators must be the same as that for the bare ones .

iv) The new operators αc satisfy the same commutation
rules as do their bare counterparts α, since the both sets are
connected to each other via the similarity transformation

αc = W†αW, (16)

with a unitary operator W to be obtained as in [10].
It is important to realize that operator K(αc) is the same

Hamiltonian H(α). Accordingly [10,11] the N–N interac-
tion operator in the CPR has the following structure:

K(NN → NN) =
∑

b

Kb(NN → NN),

Kb(NN → NN) =

∫ ∑

µ

dp′1 dp′2 dp1 dp2

× Vb(1′, 2′; 1, 2)b†c(1′)b†c(2′)bc(1)bc(2), (17)

where the symbol
∑
µ

denotes the summation over nucleon

spin projections, 1 = {p1, µ1}, etc.
For our evaluations of the c–number matrices Vb we

have employed some experience from Refs. [10,11] to get
in the second order in the coupling constants

Vb(1′, 2′; 1, 2) =
1

(2π)3

m2

√
Ep′1 Ep′2 Ep1 Ep2

× δ (p′1 + p′2 − p1 − p2
)
vb(1′, 2′; 1, 2), (18)
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vs(1′, 2′; 1, 2)

= −g
2
s

2
ū(p′1)u(p1)

1
(p1 − p′1)2 − m2

s
ū(p′2)u(p2), (19)

vps(1′, 2′; 1, 2)

=
g2

ps

2
ū(p′1)γ5u(p1)

1
(p1 − p′1)2 − m2

ps
ū(p′2)γ5u(p2), (20)

vv(1′, 2′; 1, 2) =
1
2

1
(p′1 − p1)2 − m2

v

×
[
ū(p′1)

{
(gv + fv)γν − fv

2m
(p′1 + p1)ν

}
u(p1)

× ū(p′2)
{

(gv + fv)γν − fv
2m

(p′2 + p2)ν
}

u(p2)

− ū(p′1)
{

(gv + fv)γν − fv
2m

(p′1 + p1)ν

}
u(p1)

× ū(p′2)
fv

2m
{
(p̂′1 + p̂′2 − p̂1 − p̂2)γν

−(p′1 + p′2 − p1 − p2)ν
}
u(p2)

]
, (21)

where mb the mass of the clothed boson (its physical value)
and q̂ = qµγµ. In the framework of the isospin formalism
one needs to add the factor τ(1)τ(2) in the corresponding
expressions.

At this point, our derivation of the vector-boson con-
tribution (21) is to be specifically commented. Actually, it
is the case, where for a Lorentz–invariant Lagrangian it is
not necessarily to have ”. . . the interaction Hamiltonian as
the integral over space of a scalar interaction density; we
also need to add non–scalar terms to the interaction den-
sity . . . ” (quoted from p.292 of Ref. [12]). Let us recall
that the density in question has the property,

UF(Λ, a)H(x)U−1
F (Λ, a) = H(Λx + a), (22)

where the operators UF(Λ, a) realize a unitary irreducible
representation of the Poincaré group in the Hilbert space
of states for free (non–interacting) fields.

By definition, the first clothing transformation W (1) =

exp[R(1)] (R(1)† = −R(1)) eliminates all interactions linear
in the coupling constants, viz.,

V (1) = Vs + Vps + V (1)
v ,

with

V (1)
v =

∫
dx

{
gvψ̄(x)γµψ(x)ϕµv(x)

+
fv

4m
ψ̄(x)σµνψ(x)ϕµνv (x)

}
. (23)

Following Ref.[10] we have

R(1) = −i lim
ε→0+

∞∫

0

V (1)
D (t)e−εtdt (24)

if mb < 2m. Here

V (1)
D ≡ exp[iHF t]V (1) exp[−iHF t] =

∫
H(1)(x)dx,

where H(1)(x) is the Lorentz scalar.
The corresponding interaction operator in the CPR (12)

can be written as

K(2)
I (αc) =

1
2

[
R(1)(αc),V (1)(αc)

]
+ V (2)(αc), (25)

where we have kept only the contributions of the second
order in the coupling constants, so

V (2) =

∫
dx

{
g2

v

2m2
v
ψ̄(x)γ0ψ(x)ψ̄(x)γ0ψ(x)

+
f 2
v

4m2 ψ̄(x)σ0iψ(x)ψ̄(x)σ0iψ(x)
}
. (26)

We point out that all quantities in the r.h.s. of Eq.(25) de-
pend on the new creation(destruction) operators αc. In par-
ticular, it means that in the standard Fourier expansions of
the fields involved in the definitions of V (1) and V (2) one
should replace the set {α} by the set {αc}. Thus, there is an
essential distinction between V (1)(V (2)), on the one hand,
and the first(second) integral in the r.h.s. of Eq.(5), on the
other hand.

For this exposition we do not intend to derive all in-
teractions between the clothed mesons and nucleons, al-
lowed by formula (25). Our aim is more humble, viz., to
find in the r.h.s. of Eq.(25) terms of the type (17), respon-
sible for the N–N interaction. Meanwhile, in case of the
vector mesons we encounter an interplay between the com-
mutator [R(1)

v ,V (1)
v ]/2 and the integral (26). Indeed, after a

simple algebra we find

1
2

[
R(1),V (1)

]
v

(NN → NN)

= Kv(NN → NN) + Kcont(NN → NN),

where the first term has the structure of Eq.(17) with the
coefficients by (21). At the same time the second term Kcont
completely cancels the non–scalar operator V (2). The lat-
ter may be associated with a contact interaction since it
does not contain any propagators (cf. the approach by the
Osaka group [14]), being expressed through the b†c(bc). In
other words, the first UCT enables us to remove the non–
invariant terms directly in the Hamiltonian. In our opinion,
such a cancellation, first discussed here, is a pleasant fea-
ture of the CPR.

Moreover, as it was shown in Ref.[10], for each boson
included the corresponding relativistic and properly sym-
metrized N–N interaction, the kernel of integral equations
for the N–N bound and scattering states, is determined by

〈
b†c(p′1)b†c(p′2)Ω

∣∣∣ Kb(NN → NN)
∣∣∣b†c(p1)b†c(p2)Ω

〉

= Vdir
b (1′, 2′; 1, 2) − Vexc

b (1′, 2′; 1, 2), (27)
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where we have separated the so–called direct

Vdir
b (1′, 2′; 1, 2) = −Vb(1′, 2′; 1, 2) − Vb(2′, 1′; 2, 1) (28)

and exchange

Vexc
b (1′, 2′; 1, 2) = Vdir

b (2′, 1′; 1, 2) (29)

terms. For example, the one–pion–exchange contribution
can be divided into the two parts:

Vdir
π (1′, 2′; 1, 2) = − g2

π

(2π)3

m2

√
Ep′1 Ep′2 Ep1 Ep2

× δ (p′1 + p′2 − p1 − p2
)

ū(p′1)γ5u(p1)ū(p′2)γ5u(p2)

× 1
2

{
1

(p1 − p′1)2 − m2
π

+
1

(p2 − p′2)2 − m2
π

}
(30)

and

Vexc
π (1′, 2′; 1, 2) = − g2

π

(2π)3

m2

√
Ep′1 Ep′2 Ep1 Ep2

× δ (p′1 + p′2 − p1 − p2
)

ū(p′1)γ5u(p2)ū(p′2)γ5u(p1)

× 1
2

{
1

(p2 − p′1)2 − m2
π

+
1

(p1 − p′2)2 − m2
π

}
(31)

to be depicted in Fig.1, where the dashed lines correspond
to the following Feynman–like ”propagators”:

1
2

{
1

(p1 − p′1)2 − m2
π

+
1

(p2 − p′2)2 − m2
π

}

on the left panel and

1
2

{
1

(p2 − p′1)2 − m2
π

+
1

(p1 − p′2)2 − m2
π

}

on the right panel. Other distinctive features of the result
(27) have been discussed in [10,11].

1
p

2
p

1
p

2
p

1
'p

2
'p

2
'p

1
'pDirect Exchange

Fig. 1. The Feynman–like diagrams for the direct and exchange
contributions in the r.h.s. of Eq.(27).

3 The field–theoretic description of the
elastic N–N scattering

3.1 The T–matrix in the CPR

In order to evaluate the N–N scattering amplitude for the
collision energy E we will regard a field operator T that
meets the equation

T (E + i0) = HI + HI(E + i0 − HF)−1T (E + i0) (32)

and whose matrix elements 〈NN|T (E + i0)|NN〉 on the en-
ergy shell E = E1 +E2 = E

′
1 +E

′
2 can be expressed through

the phase shifts and mixing parameters.
Unlike nonrelativistic quantum mechanics (NQM) in

relativistic QFT the interaction HI does not conserve the
particle number, being the spring of particle creation and
destruction. The feature makes the problem of finding the
N–N scattering matrix much more complicated than in the
framework of nonrelativistic approach.

Such a general field–theoretic consideration can be sim-
plified with the help of an equivalence theorem [15] ac-
cording to which the S matrix elements in the Dirac (D)
picture, viz.,

S f i ≡ 〈α†...Ω0|S (α)|α†...Ω0〉 (33)

are equal to the corresponding elements

S c
f i ≡ 〈α†c ...Ω|S (αc)|α†c ...Ω〉 (34)

of the S matrix in the CPR once the UCTs

WD(t) = exp(iKF t)W exp(−iKF t)

obey the condition

WD(±∞) = 1 (35)

The T operator in the CPR satisfies the equation

Tcloth(E + i0) = KI

+ KI(E + i0 − KF)−1Tcloth(E + i0) (36)

and the matrix

T f i ≡ 〈 f ; b|T (E + i0)|i; b〉
= 〈 f ; c|Tcloth(E + i0)|i; c〉 ≡ T c

f i, (37)

where |; b〉 ( |; c〉 ) are the HF ( KF ) eigenvectors, may
be evaluated relying upon properties of the new interaction
KI(αc).

If in Eq.(36) we approximate KI by K(2)
I , then initial

task of evaluating the CPR matrix elements can be reduced
to solving the equation

〈1′, 2′|TNN(E)|1, 2〉 = 〈1′, 2′|KNN |1, 2〉
+ 〈1′, 2′|KNN(E + i0 − KF)−1TNN(E)|1, 2〉. (38)

3.2 The R–matrix equation and its
angular–momentum decomposition

For practical applications one prefers to work with the cor-
responding R–matrix that meets the set of equations

〈
1′2′

∣∣∣ R̄(E) |12〉 =
〈
1′2′

∣∣∣ K̄NN |12〉

+

∫

34

∑〈
1′2′

∣∣∣ K̄NN |34〉 〈34| R̄(E) |12〉
E − E3 − E4

(39)
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with R̄(E) = R(E)/2 and K̄NN = KNN/2, where the oper-
ation

∫
34

∑
means the summation over nucleon polarizations

and the p.v. integration over nucleon momenta. The kernel
of Eq.(39) is

〈
1′2′

∣∣∣K̄NN

∣∣∣ 12
〉

= δ
(
p′1 + p′2 − p1 − p2

) 〈
1′2′

∣∣∣V̄
∣∣∣ 12

〉

≡ δ (
p′1 + p′2 − p1 − p2

)

×
〈
p′1µ

′
1τ
′
1,p

′
2µ
′
2τ
′
2

∣∣∣V̄
∣∣∣ p1µ1τ1,p2µ2τ2

〉

The subsequent calculations are essentially simplified
in the center–of–mass system (c.m.s) in which

〈
p′µ′1µ

′
2, τ
′
1τ
′
2

∣∣∣R̄(E)
∣∣∣ pµ1µ2, τ1τ2

〉

=
〈
p′µ′1µ

′
2, τ
′
1τ
′
2

∣∣∣V̄
∣∣∣ pµ1µ2, τ1τ2

〉

+
∑

p.v.
∫

dq
〈
p′µ′1µ

′
2, τ
′
1τ
′
2

∣∣∣V̄
∣∣∣ qµ3µ4, τ3τ4

〉

×
〈
qµ3µ4, τ3τ4

∣∣∣R̄(E)
∣∣∣ pµ1µ2, τ1τ2

〉

E − 2Eq
(40)

Here the quantum numbers µ(τ) are the individual spin
(isospin) projections.

Accordingly Eq. (27)

〈
1′2′

∣∣∣ V̄ |12〉 =
1

2(2π)3

m2

Ep′Ep

×
∑

b

[vdir
b (1′, 2′; 1, 2) − vexc

b (1′, 2′; 2, 1)] (41)

with

vdir
b (1′, 2′; 1, 2) = −vb(1′, 2′; 1, 2) − vb(2′, 1′; 2, 1) (42)

and
vexc

b (1′, 2′; 2, 1) = vdir
b (2′, 1′; 1, 2),

where the separate boson contributions are determined by
Eqs. (19)–(21) with p1 = p = −p2 and p′1 = p′ = −p′2.

Following a common practice we are interested in the
angular–momentum decomposition of Eq.(40) assuming a
nonrelativistic analog of relativistic partial wave expan-
sions (see [16] and refs. therein) for two–particle states.
For example, the clothed two–nucleon state (the so–called
two–nucleon plane wave) can be represented as

|pµ1µ2, τ1τ2〉 =
∑(

1
2µ1

1
2µ2 |S MS

) (
1
2τ1

1
2τ2 |T MT

)

(lmlS MS |JMJ ) Y∗lml
(p/p) |pJ(lS )MJ ,T MT 〉 , (43)

where J, S and T are, respectively, total angular momen-
tum, spin and isospin of the NN pair, being the eigenvalues
of the operators J f erm, S f erm and T f erm. Here

J f erm = L f erm + S f erm, (44)

where L f erm (S f erm) the orbital (spin) momentum of the
fermion field,

L f erm =
i
2

∑

µ

∫
dp p ×

∂b†c(pµ)
∂p

bc(pµ)

− b†c(pµ)
∂bc(pµ)
∂p

+
∂d†c (pµ)
∂p

dc(pµ)

−d†c (pµ)
∂dc(pµ)
∂p

]
(45)

and

S f erm =
1
2

∑

µµ′

∫
dp χ†µ′σχµ

{
b†c(pµ′)bc(pµ)

−d†c (pµ′)dc(pµ)
}
, (46)

where χµ′(χµ) are the Pauli spinors. For brevity, we do not
show the isospin operator T f erm.

The corresponding eigenvalue equations look as

J 2
f erm |pJ(lS )MJ〉 = J(J + 1) |pJ(lS )MJ〉
Jz

f erm |pJ(lS )MJ〉 = MJ |pJ(lS )MJ〉 (47)

and
S 2

f erm |pS MS 〉 = S (S + 1) |pS MS 〉
S z

f erm |pS MS 〉 = MS |pS MS 〉 (48)

Doing so, we have introduced the vectors2

|pS MS 〉 =
∑(

1
2
µ1

1
2
µ2

∣∣∣∣∣ S MS

)
|pµ1µ2〉 (49)

and

|pJ(lS )MJ〉
=

∫
dp̂ Ylml (p/p) |pS MS 〉 (lmlS MS |JMJ ) (50)

A simple way of deriving Eqs.(47)–(48) is to use the
transformation

Uc
F(R)|pS MS 〉 = |RpS M′S 〉D(S )

M′S MS
(R) (51)

∀R ∈ the rotation group

One should note that in our case the separable ansatz

|p1p2µ1µ2〉 = |p1µ1〉 |p2µ2〉
often exploited in relativistic quantum mechanics (RQM)
(see, e.g., [16] and [17]) does not work. However, one can
employ the similarity transformation 3

Uc
F (Λ, a) b†c (pµ) Uc

F† (Λ, a)

= eiΛp·ab†c
(
Λpµ′

)
D( 1

2 )
µ′µ (W (Λ, p)) (52)

2 For a moment, the isospin quantum numbers are suppressed.
3 Sometimes it is convenient to handle the operators b†c(pµ) =√
p0b†c(pµ) and their adjoints bc(pµ) that meet covariant relations{

b†c(p′µ′), bc(pµ)
}

= p0δ(p′ − p)δµ′µ
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with the Wigner rotation W(Λ, p) (e.g., for rotations W(R, p) =
R ) and the property of the physical vacuum Ω to be invari-
ant with respect to unitary transformations Uc

F in the CPR
(some details can be found in a separate paper).

The use of expansion (43) gives rise to the well known
JST representation, in which

〈
p′J′(l′S ′)M′J ,T

′M′T
∣∣∣R̄(E){V̄}

∣∣∣ pJ(lS )MJ ,T MT

〉

= R̄(E){V̄}JS T
l′l (p′, p)δJ′JδM′J MJδS ′S δT ′TδM′T MT , (53)

so Eq.(40) reduces to the set of simple integral equations,

R̄JS T
l′ l (p′, p) = V̄ JS T

l′ l (p′, p)

+
∑

l′′
p.v.

∞∫

0

q2 dq
2(Ep − Eq)

V̄ JS T
l′ l′′ (p′, q)R̄JS T

l′′l (q, p) (54)

to be solved for each submatrix R
JS T

composed of the ele-
ments

R̄JS T
l′l (p′, p) ≡ R̄JS T

l′l (p′, p; 2Ep), (55)

where Ep =
√

p2 + m2 the collision energy in the c.m.s..
One should note that in view of the charge independence
assumed in this work one has to solve two separate equa-
tions for isospin values T = 0 and T = 1.

4 Results of numerical calculations and
their discussion

In the course of our computations we have used the so–
called matrix inversion method (MIM) (see [18] and refs.
therein). Since we deal with the relativistic dispersion law
for the particle energies, the well known substraction pro-
cedure within the MIM leads to equations

RJS T
l′l (p′, p) = V JS T

l′l (p′, p)

+
1
2

∑

l′′

∞∫

0

dq
p2 − q2

{
q2(Ep + Eq)V JS T

l′l′′ (p′, q)RJS T
l′′l (q, p)

−2p2EpV JS T
l′l′′ (p′, p)RJS T

l′′l (p, p)
}
. (56)

To facilitate comparison with some derivations and calcu-
lations from Refs. [2], [20], we introduce the notation

〈
p′ µ′1µ

′
2

∣∣∣ vUCT
b |p µ1µ2〉
≡ −F2

b(p′, p)
[
vb(1′, 2′; 1, 2) + vb(2′, 1′; 2, 1)

]

for the regularized UCT quasipotentials in the c.m.s. As
in Ref.[2], we put that invariants Fb(p′, p) = Fb(Λp′, Λp)
have a phenomenological form,

Fb(p′, p) =


Λ2

b − m2
b

Λ2
b − (p′ − p)2


nb

≡ Fb[(p′ − p)2]

Table 1. The best–fit parameters for the two models. The third
(fourth) column taken from Table A.1 [20] (obtained by solving
Eqs.(56) with a least squares fitting to OBEP values in Table 2).
All masses are in MeV , and nb = 1 except for nρ = nω = 2.

Meson Potential B UCT

π g2
π/4π 14.4 14.5
Λπ 1700 2200
mπ 138.03 138.03

η g2
η/4π 3 2.8534
Λη 1500 1200
mη 548.8 548.8

ρ g2
ρ/4π 0.9 1.3
Λρ 1850 1450

fρ/gρ 6.1 5.85
mρ 769 769

ω g2
ω/4π 24.5 27
Λω 1850 2035.59
mω 782.6 782.6

δ g2
δ/4π 2.488 1.6947
Λδ 2000 2200
mδ 983 983

σ, T = 0 g2
σ/4π 18.3773 19.4434
Λσ 2000 1538.13
mσ 720 717.7167

σ, T = 1 g2
σ/4π 8.9437 10.8292
Λσ 1900 2200
mσ 550 568.8612

Doing so, we have

〈
p ′ µ′1µ

′
2

∣∣∣ vUCT
s |p µ1µ2〉

= g2
s ū(p ′)u(p)

F2
s [(p′ − p)2]

(p′ − p)2 − m2
s
ū(−p ′)u(−p), (57)

〈
p ′ µ′1µ

′
2

∣∣∣ vUCT
ps |p µ1µ2〉

= −g2
psū(p ′)γ5u(p)

F2
ps[(p′ − p)2]

(p′ − p)2 − m2
ps

ū(−p ′)γ5u(−p) (58)

〈
p ′ µ′1µ

′
2

∣∣∣ vUCT
v |p µ1µ2〉 = − F2

v[(p′ − p)2]

(p′ − p)2 − m2
v

×
{

ū(p ′)
[
(gv + fv) γν − fv

2m
(
p′ + p

)
ν

− fv
2m

(Ep′ − Ep)[γ0γν − g0ν]
]

u (p)

× ū
(−p ′

) [
(gv + fv) γν − fv

2m
(p′ + p)

ν

− fv
2m

(Ep′ − Ep)[γ0γν − g0ν]
]

u(−p)
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Table 2. Neutron–proton phase shifts (in degrees) for various laboratory energies (in MeV). The OBEP(OBEP∗)–rows taken from Ta-
ble 5.2 [20] (calculated by solving Eqs.(61) with the model parameters from the third column in Table 1). The UCT∗(UCT)–rows
calculated by solving Eqs.(56) with the parameters from the third (fourth) column in Table 1. As in [2], we have used the bar convention
[19] for the phase parameters.

State Potential 25 50 100 150 200 300

OBEP 50.72 39.98 25.19 14.38 5.66 -8.18
1S 0 OBEP∗ 50.71 39.98 25.19 14.37 5.66 -8.18

UCT∗ 66.79 53.01 36.50 25.27 16.54 3.12
UCT 50.03 39.77 25.55 15.20 6.92 -6.07

OBEP -7.21 -11.15 -16.31 -20.21 -23.47 -28.70
1P1 OBEP∗ -7.17 -11.15 -16.32 -20.21 -23.48 -28.71

UCT∗ -7.40 -11.70 -17.73 -22.63 -26.98 -34.54
UCT -7.15 -10.95 -15.62 -18.90 -21.49 -25.41

OBEP 0.68 1.58 3.34 4.94 6.21 7.49
1D2 OBEP∗ 0.68 1.58 3.34 4.94 6.21 7.49

UCT∗ 0.68 1.59 3.40 5.10 6.52 8.20
UCT 0.68 1.56 3.22 4.68 5.77 6.68

OBEP 9.34 12.24 9.80 4.57 -1.02 -11.48
3P0 OBEP∗ 9.34 12.24 9.80 4.57 -1.02 -11.48

UCT∗ 9.48 12.53 10.32 5.27 -0.15 -10.27
UCT 9.30 12.16 9.81 4.73 -0.68 -10.76

OBEP -5.33 -8.77 -13.47 -17.18 -20.49 -26.38
3P1 OBEP∗ -5.33 -8.77 -13.47 -17.18 -20.48 -26.38

UCT∗ -5.27 -8.62 -13.09 -16.56 -19.63 -25.06
UCT -5.28 -8.58 -12.85 -16.06 -18.86 -23.79

OBEP 3.88 9.29 17.67 22.57 24.94 25.36
3D2 OBEP∗ 3.89 9.29 17.67 22.57 24.94 25.36

UCT∗ 3.86 9.15 17.12 21.51 23.47 23.48
UCT 3.89 9.25 17.31 21.77 23.75 23.61

OBEP 80.32 62.16 41.99 28.94 19.04 4.07
3S 1 OBEP∗ 80.31 62.15 41.98 28.93 19.03 4.06

UCT∗ 92.30 72.71 51.44 38.10 28.20 13.70
UCT 79.60 61.53 41.57 28.75 19.08 4.60

OBEP -2.99 -6.86 -12.98 -17.28 -20.28 -23.72
3D1 OBEP∗ -2.99 -6.87 -12.99 -17.28 -20.29 -23.72

UCT∗ -2.74 -6.43 -12.36 -16.54 -19.47 -22.78
UCT -3.00 -6.90 -13.12 -17.66 -21.11 -26.03

OBEP 1.76 2.00 2.24 2.58 3.03 4.03
ε1 OBEP∗ 1.76 2.00 2.24 2.58 3.03 4.03

UCT∗ 0.02 -0.12 -0.17 0.04 0.41 1.40
UCT 1.80 2.01 2.19 2.50 2.90 3.83

OBEP 2.62 6.14 11.73 14.99 16.65 17.40
3P2 OBEP∗ 2.62 6.14 11.73 14.99 16.65 17.39

UCT∗ 2.80 6.61 12.71 16.28 18.10 18.91
UCT 2.57 6.00 11.32 14.18 15.37 15.07

OBEP 0.11 0.34 0.77 1.04 1.10 0.52
3F2 OBEP∗ 0.11 0.34 0.77 1.04 1.10 0.52

UCT∗ 0.11 0.34 0.77 1.05 1.13 0.64
UCT 0.11 0.34 0.75 1.00 1.03 0.41

OBEP -0.86 -1.82 -2.84 -3.05 -2.85 -2.02
ε2 OBEP∗ -0.86 -1.82 -2.84 -3.05 -2.85 -2.02

UCT∗ -0.87 -1.83 -2.82 -2.99 -2.75 -1.88
UCT -0.86 -1.83 -2.84 -3.05 -2.89 -2.18
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Fig. 2. Neutron-proton phase parameters for the uncoupled partial waves, plotted versus the nucleon kinetic energy in the lab. system.
Dashed[solid] curves calculated with Potential B parameters (Table 1) by solving Eqs. (56)[(61)]. Dotted represent the solutions of Eqs.
(56) with UCT parameters (Table 1). The rhombs show original OBEP results (see Table 2).

− fv2

4m2 (Ep′ − Ep)2ū(p ′)[γ0γν − g0ν]u(p)

× ū(−p ′)[γ0γν − g0ν]u(−p)
}
, (59)

where (p′ + p)
ν

= (Ep′ + Ep,−(p′ + p)).
At first sight, such a regularization can be achieved via

a simple substitution gb → gbFb(p′, p) with some cutoff
functions Fb(p′, p) depending on the 4–momenta p′ and p.

However, the principal moment is to satisfy the require-
ment (22) for the Hamiltonian invariant under space inver-
sion, time reversal and charge conjugation. In this context,
let us remind that the baryon–nucleon–nucleon form fac-
tors are expressed through the matrix elements 〈p′| jb(0)|p〉
of the corresponding baryon current density jb(x) at x = 0
between physical(clothed) one–nucleon states [21]. Such
matrix elements might be evaluated in terms of the cutoffs
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Fig. 3. The same in Fig. 2 but for the coupled waves.

Fb(p′, p) using some idea from [22] (cf. the clothed parti-
cle representation of a current therein).

Replacing in equations (57)–(59)

1
(p′ − p)2 − m2

b

F2
b[(p′ − p)2]

by
−1

(p′ − p)2 + m2
b

F2
b[−(p′ − p)2]

and neglecting the tensor-tensor term

fv2

4m2 (Ep′ − Ep)2

× ū(p ′)[γ0γν − g0ν]u(p)ū(−p ′)[γ0γν − g0ν]u(−p) (60)

in (59), we obtain approximate expressions that with the
common factor

(2π)−3m2/Ep′Ep

instead of
(2π)−3m/

√
Ep′Ep

05029-p.9
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are equivalent to Eqs. (E.21)–(E.23) from [2]. Such an equiv-
alence becomes coincidence if in our formulae instead of
the canonical two-nucleon basis |p µ1µ2〉 one uses the he-
licity basis as in [2].

In the context, we have considered the set of equations

BRJS T
l′l (p′, p) = BV JS T

l′l (p′, p)

+ m
∑

l′′

∞∫

0

dq
p2 − q2

{
q2 BV JS T

l′l′′ (p′, q)BRJS T
l′′l (q, p)

−p2 BV JS T
l′l′′ (p′, p)BRJS T

l′′l (p, p)
}
, (61)

where the superscript B refers to the partial matrix ele-
ments of the potential B defined in [20] with the just men-
tioned interchange of the bases.

Our calculations of the R matrices that meet the equa-
tions (56) and (61) are twofold. On the one hand, we will
check reliability of our numerical procedure (in particular,
its code). On the other hand, we would like to show sim-
ilarities and discrepancies between our results and those
by the Bonn group both on the energy shell and beyond
it. These results are depicted in Figs. 2–3 and collected in
Table 2.

As seen in Figs. 2–3, the most appreciable distinctions
between the UCT and OBEP curves take place for the phase
shifts with the lowest l−values. As the orbital angular mo-
mentum increases the difference between the solid and da-
shed curves decreases. Such features may be explained if
one takes into account that the approximations under con-
sideration affect mainly high–momentum components of
the UCT quasipotentials (their behavior at ”small” distan-
ces). With the l–increase the influence of small distances is
suppressed by the centrifugal barrier repulsion.

Of course, it would be more instructive to compare the
corresponding half–off–energy–shell R–matrices (see def-
inition (55)). Their p′–dependencies not shown here have
been prepared for a separate publication. They are neces-
sary to know when calculating the ψ(±) scattering states for
a two–nucleon system. In the context, one should empha-
size that hitherto we have explored the OBEP and UCT
R–matrices in the c.m.s., where the both approaches yield
most close results. It is not the case in those situations
when the c.m.s. cannot be referred to everywhere (e.g., in
the reactions NN → γNN and γd → pn). In this respect
our studies of the differences between UCT and OBE ap-
proaches are under way.

5 Summary

The present work has been made to develop a consistent
field–theoretical approach in the theory of nucleon–nucleon
scattering. It has been shown that the method of UCT’s,
based upon the notion of clothed particles, is proved to be
appropriate in achieving this purpose.

Using the unitary equivalence of the CPR to the BPR,
we have seen how in the approximation KI = K(2)

I the ex-
tremely complicated scattering problem in QFT can be re-
duced to the three–dimensional LS–type equation for the

T–matrix in momentum space.The equation kernel is given
by the clothed two–nucleon interaction of the class [2.2].
Such a conversation becomes possible owing to the prop-
erty of K(2)

I to leave the two–nucleon sector and its separate
subsectors to be invariant.

Special attention has been paid to the elimination of
auxiliary field components. We encounter such a necessity
for interacting vector and fermion fields when in accor-
dance with the canonical formalism the interaction Hamil-
tonian density embodies not only a scalar contribution but
nonscalar terms too. It has proved (at least, for the primary
ρN and ωN couplings) that the UCT method allows us to
remove such noncovariant terms directly in the Hamilto-
nian. To what extent this result will take place in higher
orders in coupling constants it will be a subject of further
explorations.
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