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Abstract. We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory
that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on
levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength
of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be.
Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained.
We also indicate how higher-order corrections that affect both s-wave and p-wave 10Be-neutron interactions will
affect our results.

1 Introduction

The first excitation of the Beryllium-10 nucleus is 3.4 MeV
above the ground state, and that ground state has quantum
numbers 0+. Meanwhile, the Beryllium-11 nucleus has a
1/2+ state whose neutron separation energy is 504 keV,
and a 1/2− state whose neutron separation energy is 184
keV. The shallowness of these two states of 11Be compared
to the bound states of 10Be suggests that they have signif-
icant components in which a loosely-bound neutron orbits
a 10Be core. In this “one-neutron halo” picture the 1/2+
is predominantly an s-wave bound state, while the 1/2− is
predominantly a relative p-wave between the neutron and
the core. In this paper we discuss efforts to use effective
field theory (EFT) to systematically implement such a halo
picture of the 11Be nucleus.

This halo viewpoint is reinforced by the fact that the
scattering volume of n10Be scattering in the l = 1, j = 1/2
channel has been determined to be [1]

a1 = 457 ± 67 fm3. (1)

The corresponding length scale of order 8 fm is large com-
pared to the natural length-scale of core-neutron interac-
tions, which is ≈ 2–3 fm.

The datum (1), together with the information on the
bound-state energies in the 10Be and 11Be systems, helps
us to estimate the expansion parameter in our Halo EFT.
This is the binding energy of the halo nucleus, as compared
to the energy required to excite the core, i.e. Blo/Bhi ≈

1/6. Converting this to an estimate of the different distance
scales involved, we infer that a majority of the probability
density of 11Be occupies a region outside the 10Be core:
Rcore/Rhalo ≈ 0.4, which is consistent with the ratio im-
plied by the numbers in the previous paragraph. This ratio
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of distance scales is the formal expansion parameter for the
EFT, and since it is not particularly small, the leading-order
calculations presented here are only a first step. Eventually
sub-leading orders must be computed in order to verify that
the series is converging in the expected manner.

Here we will apply this EFT to electromagnetic reac-
tions in the 11Be system. The B(E1)(1/2+ → 1/2−) transi-
tion has recently been measured to be

B(E1)(1/2+ → 1/2−) = 0.105(12) e2 fm2 (2)

using intermediate-energy Coulomb excitation [2]. This is
consistent with the older number

B(E1)(1/2+ → 1/2−) = 0.116(12) e2 fm2 (3)

from lifetime measurements [3]. There are also two recent
data sets on the Coulomb-induced breakup of the 11Be nu-
cleus [4,5] (see also Ref. [6]). Both experiments extracted
the excitation function dB(E1)/dE as a function of the en-
ergy of the outgoing neutron, E. For low neutron energies
this excitation function is affected by the final-state inter-
action in the p-waves, and can be predicted in the halo pic-
ture [1]. The non-energy-weighted sum rule, applied to the
data of Ref. [4], then gives a measurement of the radius of
the ground state of 11Be of

〈r2〉1/2 = 5.7(4) fm. (4)

This is consistent with the recent atomic-physics measure-
ment of the charge radius [7]:

rc = 2.463(16) fm, (5)

when one accounts for the fact that the matter radius and
the charge radius differ by a factor of the effective charge,
Ze f f , of the 11Be nucleus, 4/11.
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All of these measurements can be addressed within the
Halo EFT we will use here. In this theory the s- and p-wave
states of the Beryllium-11 nucleus are generated by core-
neutron contact interactions. The theory does not get the
interior part of the nuclear wave function correct, but, by
construction, it reproduces the correct asymptotics of the
wave functions of these states:

u0(r) = A0 exp(−γ0r);

u1(r) = A1 exp(−γ1r)
(
1 +

1
γ1r

)
, (6)

for the 504 keV and 184 keV states, respectively. As such,
it is not a method that is meant to compete with ab ini-
tio calculations of this halo nucleus (see, e.g. [8,9]) or of
10Be-n scattering [10]. But it could prove complementary
to such computations, since Halo EFT provides a way to
ensure that the long-distance properties of the halo are cor-
rectly taken care of.

The quantities γ0 and γ1 are determined by the neu-
tron separation energies of the states in question. At lead-
ing order (LO) in the expansion both A0 and A1 are fixed.
(In the case of the p-wave this is related to the theorem
discussed by Lee at the meeting [11].) At next-to-leading
order (NLO) both A0 and A1 receive corrections whose val-
ues must be determined from neutron-10Be scattering data.

2 Halo EFT for Beryllium-11

We use the “Halo EFT” developed in Refs. [12,13] to cal-
culate the properties of the Beryllium-11 nucleus. The de-
grees of freedom in our Halo EFT treatment are the 10Be
core and the neutron. The EFT expansion in this case is an
expansion in powers of ω/Bhigh. Here Bhigh is, e.g. the ex-
citation energy of states in 10Be, and so is of order a few
MeV, and ω is the energy of the photon exciting the elec-
tromagnetic transition of interest.

2.1 Strong piece

In our LO calculation we include the strong s-wave and
p-wave interactions that lead to the shallow bound states
in the 11Be system through the incorporation of additional
spin-zero and spin-one fields:

L = c†
(
i∂t +

∇2

2M

)
c + n†

(
i∂t +

∇2

2m

)
n

+σ†
[
η0

(
i∂t +

∇2

2Mnc

)
+ ∆0

]
σ

+π†j

[
η1

(
i∂t +

∇2

2Mnc

)
+ ∆1

]
π j

−g0

[
σn†c† + σ†nc

]
+

ig1

2

[
π†j (c

↔

∇ j n) − (c†
↔

∇ j n†)π j

]
+ . . . . (7)

Here . . . represents additional p-wave interactions neces-
sary to maintain Gallilean invariance, while c and n are the

“core” and neutron fields. Hence, c is a bosonic field and
n a fermionic one. The field σ represents the s-wave state
and π j the p-wave state.

2.2 Dressing the s-wave state

In order to treat the shallow s-wave state in the 10Be-neutron
system we adopt the counting that has been successfully
developed to treat shallow s-wave states in the nucleon-
nucleon system [14–18]. This can be implemented by not-
ing that then σnc coupling is dimensionful, and taking it to
be of order Rhalo. Meanwhile nc loops will have a typical
size of order 1/Rhalo

1, and so such a counting mandates
the resummation of nc loops when computing the σ prop-
agator. This can be achieved through the Dyson equation
shown in Fig. 1, which leads to:

Dσ(p) =
1

∆0 + η0[p0 − p2/(2Mnc)] − Σσ(p)
, (8)

with Σσ(p) the one-loop self-energy for the σ field.

= +

Fig. 1. Diagrammatic representation for the Dyson equation
which incorporates the one-loop nc dressing of the field repre-
senting the s-wave 10Be-n bound state in the theory. Here and
below the dashed line represents the field for the 10Be core, and
the thin solid line is the neutron. The thick grey line is the un-
dressed σ propagator, and the thick black line is the dressed σ
propagator.

This one-loop self-energy is calculated as:

Σσ(p) = −
g2

0mR

2π

µ + i

√
2mR

(
p0 −

p2

2Mnc
+ iη

) , (9)

when computed in power-law divergence subtraction (PDS)
with a scale µ [15,16]. Here we have introduced the re-
duced and total masses of the neutron-core system:

Mnc = mn + mc; mR =
mnmc

mn + mc
. (10)

Substituting Eq. (9) into Eq. (8), we can set the pa-
rameters g0 and ∆0 by computing the s-wave neutron-core
scattering amplitude in the theory (7) (see Fig. 2):

t0(E) = g2
0Dσ(E, 0), (11)

in the two-body center-of-mass frame. This is then matched
to the effective-range expansion in this channel:

t0(E) =
2π
mR

1
1/a0 −

1
2 r0k2 + ik

, (12)

1 In a suitable regularization scheme, e.g. power-law diver-
gence subtraction [15,16], this is true for both the real and imag-
inary parts of the loops.
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Fig. 2. The single Feynman diagram that is needed (once the
dressing of the σ field has been computed) to obtain the s-wave
neutron-core scattering amplitude.

producing

Dσ(p) =
2πγ0

m2
Rg

2
0

1
1 − r0γ0

1

p0 −
p2

2Mnc
+ B0

+ regular. (13)

In Eq. (13) the position of the pole is determined by the
binding energy B0 = γ

2
0/(2mR), and γ0 is the positive root

of the equation:

1
a0
+

1
2

r0γ
2
0 − γ0 = 0. (14)

2.3 Dressing the p-wave state

We proceed similarly for the p-wave state. The propagator
for this state obeys the Dyson equation depicted in Fig. 3.
Consequently it takes the form:

Dπ(p) =
1

∆1 + η1[p0 − p2/(2Mnc)] − Σπ(p)
. (15)

Computation of the one-loop self-energy from the perti-
nent p-wave vertices in Eq. (7) gives, if PDS is employed:

Σπ(p) = −
mRg

2
1k2

6π

[
3
2
µ + ik

]
. (16)

= +

Fig. 3. Diagrammatic representation for the Dyson equation
which incorporates the one-loop nc dressing of the field repre-
senting the p-wave 10Be-n bound state in the theory. Once again,
the dashed line represents the field for the 10Be core, and the thin
solid line is the neutron. The thin double line is the undressed π
propagator, and the thick double line is the dressed π propagator.

We note that, since the self-energy loop is cubically
divergent, both parameters, ∆1 and g1, are mandatory for
renormalization at LO. This time we are interested in the
p-wave core-neutron scattering amplitude in the center-of
mass frame:

t1(p′,p; E) = g2
1p′ · pDπ(E, 0)

=
6π
mR

p′ · p
1/a1 −

1
2 r1k2 + ik3

, (17)

with k =
√

2mRE = |p′| = |p| for on-shell scattering. Con-
sequently we obtain:

Dπ(p) = −
3π

m2
Rg

2
1

2
r1 + 3γ1

i
p0 − p2/(2Mnc) + B1

+ regular.

(18)
Here γ1 =

√
2mRB1 is the solution of

1
a1
+

1
2

r1γ
2
1 + γ

3
1 = 0, (19)

where a1 is the scattering volume, and r1 the p-wave “ef-
fective range”, which, in fact, has dimensions of 1/length.

2.4 Fixing parameters

Using the experimentally known values B0 = 504 keV,
B1 = 184 keV, we infer γ0 = 0.15 fm−1, and γ1 = 0.09
fm−1, which are both of the expected size 1/Rhalo.

There are two possible countings for the p-wave scat-
tering volume a1. Here we adopt that of Ref. [13], and take
a1 ∼ R2

haloRcore, as this requires only one fine tuning in the
parameters of the underlying theory. (By comparison, the
counting of Ref. [12], where a1 ∼ R3

halo requires two such
fine tunings.) With a1 ∼ R2

haloRcore, and γ1 ∼ 1/Rhalo, we
can neglect the γ3

1 term in Eq. (19) at leading order and
deduce:

r1 = −
2
γ2

1a1
. (20)

It follows that if we adopt the central experimental value
from Eq. (1) we have r1 = −0.54 fm−1. (Propagation of
experimental errors to the final result is straightforward but
will not be discussed in this contribution.) Parametrically
r1 ∼ 1/Rcore. At NLO Eq. (20) is corrected to:

r1 = −
2
γ2

1a1
− 2γ1, (21)

which reduces r1 to −0.72 fm−1, a ∼ 30% correction that
is in line with the anticipated expansion parameter of Halo
EFT in the 11Be system.

In the s-waves the situation is more straightforward:
there we count a0 ∼ Rhalo, and r0 ∼ Rcore. In consequence
we can set r0 = 0 at LO, and obtain from Eq. (14)

γ0 =
1
a0
. (22)

Thus, the parameters in the strong sector at LO are r1,
γ0 (or equivalently a0), and γ1. At NLO these are to be
supplemented by r0.

2.5 Including photons

Photons are then included in the Lagrangian via minimal
substitution:

∂µ → Dµ = ∂µ + ieQAµ. (23)
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The charge operator Q takes different values, depending
on whether it is acting on a c field or an n field. Q n = 0
for the neutron, and below we denote the eigenvalue of the
operator Q for the c field as Q c = Qc c. Qc = 4 in the case
of interest here, where the core is Beryllium-10.

If magnetic properties are to be discussed we must also
consider the insertion of photon interactions with the neutron-
core system which are gauge-invariant by themselves (e.g.
the contribution of the neutron magnetic moment). But here
our focus is on electric properties (and form factors) at
LO and NLO, and so it is only necessary to consider how
the Lagrangian (7) is affected by the substitution (23). At
NNLO in the computation of these properties operators in-
volving the electric field E and the fields c, n, and σ which
are gauge invariant by themselves contribute to observ-
ables. Thus, at that order there is at least one parameter in
the Halo EFT description of Coulomb-induced breakup of
the Beryllium-11 ground state which cannot be fixed from
10Be-neutron scattering information alone.

3 Results for observables

Using Eq. (7) plus minimal substitution (23) we obtain a
Lagrangian that describes interactions amongst the core,
the neutron, the ground and excited states of the 11Be nu-
cleus, and photons. In this section we use this Lagrangian
to compute the form factor of the s-wave state and the E1
transition from the s-wave to the p-wave state.

3.1 s-wave form factor

The s-wave form factor is computed by calculating the
contribution to the irreducible vertex for A0σσ interactions
shown in Fig. 4. This is the only diagram it is necessary to
consider at leading order. After the application of wave-
function renormalization, the irreducible vertex for the A0
photon coupling to the σ state is equal to −ieQcGc(|q|),
where q is the three-momentum of the virtual photon. (Such
an interpretation is valid provided the computation is car-
ried out in the Breit frame, where the four-momentum of
the virtual photon q = (0,q).) A straightforward calcula-
tion yields:

Gc(|q|) =
2γ0

f |q|
arctan

(
f |q|
2γ0

)
, (24)

with f = m/Mnc = mR/M. Note that Gc(0) = 1, as it
should. For the deuteron we have f = 1/2, and this reduces
to the LO result of Ref. [19].

The charge radius of the s-wave state can be extracted
according to:

Gc(|q|) = 1 −
1
6
〈r2

c 〉q
2 + . . . , (25)

and an expansion of Eq. (24) in powers of |q| then yields

〈r2
c 〉 =

f 2

2γ2
0

(26)

Fig. 4. The LO contribution to the irreducible vertex for an A0

photon to couple to the field representing the 10Be-neutron s-wave
bound state. Note that there is no diagram for the photon to couple
to the neutron as this order, since Qn = 0.

Putting in the number for γ0 obtained in the previous
section we find 〈r2

c 〉
1/2 = 1.73 fm from this leading-order

HEFT computation. This is about 30% smaller than the
atomic physics measurement of 〈r2

c 〉
1/2 = 2.463(16) fm.

(The numbers from the non-energy-weighted sum rule are
similar when corrected for f .) We expect NLO corrections
to increase the charge radius, and a shift of the size needed
to produce agreement with experiment is entirely consis-
tent with the nominal ∼ 0.4 expansion parameter of the
Halo EFT in this system. At NLO a careful treatment of
current conservation, which includes an operator associ-
ated with gauging the term ∼ σ†∂0σ in Eq. (7), still yields
Gc(0) = 1, but also produces an increased charge radius,
as long as r0 > 0, cf. Ref. [20,21]. The precise size of
the increase is fixed once the s-wave effective range r0 is
known.

The charge radius of the p-wave state is also calculable
in the Halo EFT. NLO corrections should be smaller there
since its binding energy, and so its typical momentum, is
lower. To our knowledge there is, as yet, no experimental
determination of the charge radius of this state.

3.2 E1 transition

Now we consider the E1 transition from the s-wave state to
the p-wave state. The irreducible vertex for this transition
is depicted in Fig. 5. Here we compute the transition for
a photon of arbitrary four momentum k = (ω,k), and the
sum of diagrams yields −iΓ jµ where j is the polarization
index of the p-wave state and µ that of the photon.

+

Fig. 5. The two diagrams needed for the calculation of the irre-
ducible vertex that governs the s-to-p-state transition, Γ jµ in Halo
EFT at leading order.
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We first observe that both the diagrams depicted in Fig. 5
are divergent, but that the divergences cancel, as they should
since gauge invariance precludes us from writing down any
contact interaction that contributes to this observable at
leading order. Current conservation at LO can be explic-
itly checked, and we find that, as long as both diagrams are
considered:

kµΓ jµ = 0. (27)

Note that if only the long-distance E1 mechanism on the
left-hand side of Fig. 5 is considered, as was done, for ex-
ample, in Ref. [22], then current conservation is not sat-
isfied, and it appears that some input from short-distance
physics is needed in order to define the prediction for this
observable.

For real photons we have k · ε = 0 and k · q = 0, with
q the incoming momentum of the s-wave state. With these
restrictions we can write the space-space components of
the vertex function as:

Γ ji = δ jiΓE + k jqiΓM . (28)

Current conservation (27) then provides an alternative way
to calculate ΓE , it tells us that:

ωΓ j0 = k jΓE . (29)

But, for Γ j0, the diagram on the right of Fig. 5 need not
be considered, and so

Γ j0(k) ∼
∫

d3r
u1(r)

r
Y1 j(r̂)eik·r u0(r)

r
, (30)

where u1 and u0 are the leading-order wave functions of the
s- and p-wave states, given by Eq. (6). As |k| → 0 Eq. (30)
reduces to:

Γ j0(k) ∼ k j

∫
dru1(r)ru0(r), (31)

an equation in which, of course, the integral is the canoni-
cal form of the E1 matrix element.

Using the definition of B(E1) [23] we find that the B(E1)
strength for this transition is related to the renormalized, ir-
reducible vertex Γ̄E by:

B(E1) =
1

4π

(
Γ̄E

ω

)
, (32)

where

Γ̄E ≡
√

Z0Z1ΓE (33)

=
1

m2
Rg0g1

√
−12π2γ0

r1
ΓE (34)

at leading order.
Hence,

B(E1) =
Z2

e f f e
2

4π
4γ0

−3r1

[
2γ1 + γ0

(γ0 + γ1)2

]2

(35)

is the leading-order Halo EFT result. No cutoff parameter
is needed in order to get a finite result for B(E1): our value

is finite without regularization. We note that the result (35)
is “universal” in the sense that it applies to any E1 s-to-p-
wave transition in a one-neutron halo nucleus. Once r1, γ1,
and γ0 are known for a given one-neutron halo the predic-
tion (35) is accurate up to corrections of order Rcore/Rhalo.

In the case of 11Be we insert the numerical values from
Sec. 2.4 and find:

BLO(E1) = 0.085 e2 fm2. (36)

This is about 20% too low compared to the value (2) ob-
tained in Ref. [2].

NLO corrections from the wave-function renormaliza-
tion factors associated with the s-wave and p-wave fields
will serve to increase the leading-order prediction. We ex-
pect them to be of the size necessary to bring the predic-
tion into agreement with the datum (2). As was discussed
above in the case of rc, there is a prediction for B(E1) at
NLO if we can fix the value of r0 from some other data. In
particular, we are optimistic that we can fix the magnitude
of r0 by examining experimental results for the low-energy
E1 strength function in breakup to the 10Be-neutron chan-
nel: dB(E1)/dE. The computation of that observable is a
straightforward extension of the s-wave bound state to p-
wave bond state E1 calculation carried out here.

We emphasize that if the s-wave effective range, r0, is
known then the NLO result is predictive. The first contri-
bution of physics at scale Rcore that cannot be fixed from
hadronic-interaction observables does not enter the result
for B(E1) until next-to-next-to-leading order, i.e. it is sup-
pressed by Blo/Bhi ∼ (Rcore/Rhalo)2.

4 Conclusion

This brief discussion of electromagnetic observables in the
Beryllium-11 system already displays the significant re-
cent experimental activity that has been focused on this
nucleus. Coulomb excitation has been used at a variety
of facilities to probe E1 transitions, and atomic-physics
experiments have made great strides through advances in
trapping technology. This means that the time is ripe for a
detailed analysis of electromagnetic properties of halo sys-
tems. Here we have shown how EFT can provide such an
analysis.

The LO result in the EFT mirrors elegant analytic ap-
proaches to halo nuclei (see, e.g. Refs. [1,22,23]). But, in
contrast to those works, there is no regulator dependence in
the LO result for the E1 strength. This is a consequence of
current conservation in our formalism. Moreover, the cor-
rection of O(Rcore/Rhalo) to the LO prediction can be sys-
tematically calculated using EFT techniques. We note that
there are no spectroscopic factors in our approach. They
represent the effect of physics at scale Rcore, and the or-
der at which such “short-distance physics” impacts elec-
tromagnetic observables can be delineated in the EFT. In
the Beryllium-11 system the EFT expansion parameter is
∼ 0.4, and the LO predictions for rc and B(E1) obtained
here are in agreement with experimental data to that ex-
pected level of accuracy. Improving this LO prediction to
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NLO will require us to fix r0, the effective range for s-wave
neutron-core scattering, from experiment. This can per-
haps be done using data on dissociation of the Beryllium-
11 nucleus to the continuum.

The Halo EFT therefore provides a complement to ab
initio methods [8–10], which can struggle to describe E1
transitions and radii in these extended systems because of
the widely varying core and halo scales that are present in
the problem. In Halo EFT this wide separation of scales
is the basis for the calculation. Input that summarizes the
physics at scale Rcore can be taken from either simulation
or experiment, and the EFT is then used to predict the out-
come of experiments that probe dynamics at the halo scale.
The application of this approach to other one-neutron ha-
los, and to two-neutron halos such as 11Li, are obvious next
steps.
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