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Abstract. We briefly review the apparent experimental discrepancies that sustain interest in the field of low-
energy few-nucleon parity violation. We argue that it is not possible to determine whether present experimental
measurements are consistent unless each is understood in terms of a complete EFT with consistent power count-
ing. Towards this end, we present the EFT that describes very low energy parity violating observables associated
with two-nucleon scattering and photon-deuteron interactions.

1 Introduction

In this talk we will use an effective field theory to explore
parity violation (PV) in the two-nucleon system. While
few measurements are presently available for comparison
to theory, the experimental community recognizes the im-
portance of the system and several new results should be
available within the next five years. Including three and
more nucleon PV processes will ultimately be necessary to
complete our understanding. But those calculations depend
upon the systematic treatment of the two-nucleon system,
and so we begin there.

The standard model of weak interactions contains PV
expressed in terms of quarks, weak bosons, etc. But these
are not the degrees of freedom that are appropriate for un-
derstanding PV in few nucleon systems at low energy. At
low enough energies, the effective degrees of freedom are
the nucleons and photons; all other excitations, including
not only quarks, gluons, and weak bosons, but also pions
are subsumed into contact interactions. Because QCD can-
not be matched onto this “pionless EFT,” EFT(6π), we are
left with a number of unknown parameters that must be
set by experimental or lattice data. With enough data, we
can determine whether the EFT, with its attendant power
counting, is consistent with reality. The standard model of
weak interactions comes from
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(whereV is the CKM matrix), from which the necessary
weak interaction Hamiltonian is found (see, e.g., Ref. [1])

H = GF√
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where the charged current

Jν(cc) ∼ uγν (1− γ5) [cosθc d + sinθc s]

and the neutral current

Jν(nc) ∼ uγν (1− γ5) u − dγν (1− γ5) d

−sγν (1− γ5) s − 4sin2θW JνEM ,

andGF is Fermi’s weak constant. For nucleon interactions,
we are interested in the portion ofH that does not change
strangeness. At the same time, the only way to extract this
∆S = 0 component from nucleon interactions without be-
ing overwhelmed by strong interactions is to look at PV
quantities since the ratio of weak to strong interactions
∼ 10−7. The∆S = 0 part of the interaction Hamiltonian can
be decomposed into three pieces based upon the change
in isospin:∆I = 2, ∆I = 1, and∆I = 0. Because of the
smallness of the Cabbibo angleθc, the∆I = 1 portion is
dominated by the neutral current.

From, for example, Fig. 5 in Ref. [2], it would appear
that the available measurements of PV observables (seen
in pp scattering, in p-He scattering, and in heavier systems
where nearby parity states create enhancements) are incon-
sistent with the theoretical framework in which they are
interpreted. However, that framework, known as the DDH
model [3] does not necessarily coincide with the predic-
tions of QCD. The DDH model is based upon a meson ex-
change picture, including vector mesons, which are either
not dynamical (at low energies) or, where they are dynam-
ical, are not included in a systematic way. Perhaps just as
seriously, the nuclear and atomic corrections in the heavier
systems may not be under control. To address the former
issue, a consistent low-energy EFT with defendable power
counting was presented in Ref. [4]. To address the latter is-
sue may require large-scale computations that respect the
appropriate EFT symmetries and power counting.
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2 Lagrangian

Crucially for the success of low-energy few nucleon PV
calculations, the analogous strong-interaction problem is
well understood. Restricted to the two-nucleon case, the
parity conservingL is [5]

LPC = N†(iD0 +
D2

2M
)N +

e
2M

N†(κ0 + τ3κ1)σ · BN

− C(1S 0)
0 (NT P(1S 0)

a N)†(NT P(1S 0)
a N)

− C(3S 1)
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i N)†(NT P(3S 1)
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whereP(1S 0)
a = 1√

8
τ2τaσ2 and P(3S 1)

i = 1√
8
τ2σ2σi project

onto the appropriate partial waves (theσi andτa are SU(2)
Pauli matrices in spin and isospin space, respectively),
DµN = ∂µN + ie 1+τ3

2 AµN, andC(1S 0)
0 andC(3S 1)

0 can be ex-
tracted from experiment. In the power divergence subtrac-
tion scheme [6,7]
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wherea(1S 0) anda(3S 1) are the scattering lengths in the sin-
glet and tripletS -channel, respectively. This subtraction
point dependence will also be seen in the parameters en-
tering the weak portion of the two-nucleon EFT(6π).

TheS -wave strong interaction chain in Fig. 1 must be

Fig. 1. Infinite bubble chain for nucleon-nucleon scattering under
contact interactions that encode strong interactions.

summed to all orders because of the anomalously large
scattering length in both the singlet and triplet channels:
a(1S 0) ∼ −1/(8 MeV), a(3S 1) ∼ 1/(36 MeV). But while the
momentum expansion fails, this sum can be performed to
yield

A = −4π
M

1
1/a + ip

+ · · ·

Electromagnetic effects have been successfully included
and agree well with experiment (See, e.g., Ref. [9,10]).
With EFT(6π) well established for both the strong and elec-
tromagnetic sectors, it remains to extend the treatment to
include parity violation. The two-nucleon parity violating
observables include

• →p p analyzing power. Polarized protons are scattered
off unpolarized protons. The asymmetry is the dif-
ference between the (differential) cross section when
the protons are polarized along their direction of mo-
tion,σ+(θ), versus when the protons are polarized anti-
parallel to their direction of motion,σ−(θ):

AL =
σ+(θ) − σ−(θ)
σ+(θ) + σ−(θ)

. (4)

This has been measured at 13.6 MeV by Eversheim et
al. [11] to be (−0.93± 0.21)× 10−7.
• →nn analyzing power.
• →n p analyzing power.

• n + p → d +
	

γ . (Or its time-reversed process.) The
circular polarization of the photon after capture (or the
polarized photon breakup of the deuteron at the same
kinematic point) yields an asymmetry presently consis-
tent with zero:Pγ = σ

+−σ−
σ++σ− = (1.8±1.8)×10−7 [12,13].

The existence of FEL programs such as that utilized by
TUNL at Duke may provide a new measurement of the
breakup reaction if future upgrades are approved.
• →n + p → d + γ. The angular distribution of the pho-

ton emitted by polarized neutron capture is also consis-
tent with zero,Aγ = (0.6± 2.1)× 10−7 [14,15], where
1
Γ

dΓ
dcosθ = 1 + Aγcosθ, but a new measurement is ex-

pected from NPDGamma at Oak Ridge [16].

Considering more nucleons in the process provides addi-
tional observables. Some of those involving polarized neu-
trons are being considered at the SNS. The technology ex-
ists to make such predictions in an EFT(6π) framework, but
that is beyond the scope of this talk. Ultimately they will
be needed to fully determine the consistency of the PV
EFT(6π) description.

A convenient categorization of the PV operators is ob-
tained by using the partial wave basis; the same basis that
was chosen to present the parity conserving Lagrangian in
Eqn. (3). At leading order there are only five possibilities
[17,4,18]:3S 1 ↔1P1, which is isospin change∆I = 0 and
describes onlynp scattering (notnn or pp); 1S 0 ↔3 P0
with ∆I = 0 (nn, np, or pp interactions);1S 0 ↔3P0 with
∆I = 1 (nn or pp only);1S 0 ↔3P0 with ∆I = 2 (nn, np,
or pp); and3S 1 ↔3P1, which is∆I = 1 (np only). P − D
wave transitions enter at higher order.

The concept of creating effective operators to build a
field theory to include the above terms is analogous to
Fermi’s four-point operator. At low enough energies, the
details of the weak interaction are not accessible. For ex-
ample, inβ decay, the process is described by a parameter,
GF , multiplied by a contact interaction, shown in Fig. 2.

Fig. 2. Low energy beta decay mapped to EFT.
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For low energy PV, we again encode not only strong in-
teractions of the quarks binding to form nucleons, but the
weak interactions as a sum of contact operators, each mul-
tiplied by an unknown parameter, as in Fig. 3. Explicitly,

Fig. 3. Quark-gluon-weak-boson PV interactions mapped onto
EFT. N is either p or n. TheC are unknown parameters. Each box
represents an operator.

and in the partial wave basis, we have [19]
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EachC is labeled by the partial waves it connects, and
isospin where necessary. Note that the derivatives are
gauged to include photon interactions (and these are all
of the photon interactions at lowest order). The left-hand
parenthetic term in each operator contains the partial wave
projection for theS -wave, either singlet or triplet as re-
quired. The right-hand parenthetic term contains the partial
wave projection for theP-wave portion of each operator.
Note that the placement of the gauged derivative must be
kept consistent because it does not commute with the parts
of the operator that project onto the appropriate isospin.

Note that these five leading order PV terms were an-
ticipated by Danilov [17]. What is new is the justification
of power counting, and the operator and renormalization
treatment that becomes the EFT.

3 Scaling of the weak operators

The leading order strong interaction terms in the two-nu-
cleon Lagrangian run quickly because of the anomalously
large scattering length in theS -waves. Because we are in
the non-relativistic limit, the four-momentum in Fig. 4 in
the loop scales likeQ5, while each propagator is 1/Q2,
yieldingµ d

dµC(µ) = Mµ
4π C2(µ), whereC is either the triplet

or singlet strong parameter,µ is the subtraction point, and
M is the nucleon mass. The solution is [6,7]

C(µ) =
4π
M

1
−µ + 1/a

,

where a is the corresponding triplet or singlet scattering
length. TheS -wave “side” of the PV operators is enhanced

Fig. 4. Mixing of strongS wave operators.C is either the singlet
or triplet parameter.

by the same mechanism in Fig. 5, yielding

Fig. 5. A PV operator mixing with a strongS -wave operator. The
PV operator parameter isX and the strong C is either the sin-
glet or triplet, as required. TheP-wave andS -wave portions are
labeled.

µ
d

dµ
X(µ) =

Mµ
4π
C(µ)X(µ) ,

where X(µ) is one of the five weak parameters, andC is
either the the triplet or singlet strong parameter as needed.
The solution is

X(µ) = X(0)
1/a

−µ + 1/a
,

where a is the corresponding triplet or singlet scattering
length. As expected, the scaling is the same as in the strong
parameter case, and we will see that the PV observables
depend upon the scale-independent ratios of theX and the
C, whereX is one of the five PV parameters.

4 NN analyzing power

The weak portion of theNN asymmetry

AL =
σ+ − σ−
σ+ + σ−

, (6)
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Fig. 6. PV NN scattering leading order diagrams. The box is one
of the PV operators, the bubble sum in the second term is the
S -wave rescattering.

is found from Fig. 6. We find [20]

A
→
nn
L =32p
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(7)

wherep is the magnitude of the CM momentum and the
dσ
dΩ are the leading order parity conserving cross sections.
While the pp asymmetry is subject to Coulomb correc-
tions, at these energies and at the angles where experi-
ments are performed the effect is negligible (smaller than
the next-to-leading order operators that are neglected here).
Note the presence of theµ independent ratiosX/C0, as ex-
pected.

5 np→ dγ

The asymmetries involvingnp → dγ come from interfer-
ence between the strong amplitude in Fig. 7 and the weak
amplitude in Fig. 8.

Fig. 7. Diagrams for strong (M1 at this order)np → dγ. The
arrowed lines are nucleons, the wavy lines photons, and the X
stands for the deuteron interpolating field. The bubble sum is
from nonperturbative strong scattering.

The amplitude may be written as [21]

M =eXNTτ2σ2

[

σ · q ǫ∗d · ǫ∗γ − σ · ǫ∗γ q · ǫ∗d
]

N
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i
ǫ
∗
γ

k
(

NTτ2σ2σ
jN

)

+ eVǫ∗d · ǫ∗γ
(

NTτ2τ3σ2N
)

+ . . . , (8)

whereǫ∗γ andǫ∗d are the polarization vectors for the photon
and deuteron, andq is the outgoing photon momentum.

Fig. 8. Diagrams for weaknp → dγ. The box stands for one
of the weak operators. The arrowed lines are nucleons, the wavy
lines are photons, and the X is the deuteron interpolating field.
The bubble sum is the strongS -wave rescattering.

For
→
n p→ dγ, the PV photon asymmetry is

1
Γ

dΓ
d cosθ

= 1+ Aγ cosθ, (9)

Aγ = −2
M
γ2

Re[Y∗W]
|Y |2 , (10)

whereγ2 = MB, with B the deuteron binding energy. The
diagrams in Fig. 7 yield [21]X=0 (at this order),

Y = − 2
M

√

π

γ3
κ1

(

1− γa(1S 0)
)

, (11)

and the diagrams in Fig. 8 yield
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so that
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)
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C(3S 1)
0

. (13)

For np → d
	

γ the PV circular polarization provides the
asymmetry

Pγ =
σ+ − σ−
σ+ + σ−

, (14)

whereσ+(σ−) is the cross section for photons with positive
(negative) helicity.

Pγ = 2
M
γ2

Re[Y∗V]
|Y |2 , (15)

Fig. 8 gives
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Table 1. The list of two-nucleon parity violating “observables”
and the PV EFT(6π) coefficients from Eqn. 5 they depend upon.

A
→
n n
L andA

→
p p
L depend upon the same set of parameters, but in dif-

ferent linear combinations. The energy dependence of theA
→
n p,1S 0
L

andA
→
n p,3S 1
L is different.Aγ is defined in Eqn. (9).Pγ is defined in

Eqn. (14).
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(17)

Once again we notice the ratio of weak-to-strong EFT(6π)
parameters in these expressions. Each parameter is individ-
ually µ-dependent, but their running is the same, yielding
aµ-independent observable as required.

6 Discussion

Table 1 collects the two-nucleon observables calculated in
PV EFT(6π) and the weak unknown parameters upon which
they depend. Clearly it will be difficult to measure the ana-
lyzing power in

→
nn scattering, separate the single from the

triplet part of
→
n p scattering, etc. In order to extract all of

the weak parameters and verify consistency with experi-
ment, more measurements will be needed, likely including
three nucleon systems. Fortunately, the same low energy
parameters involved in the two nucleon observables will
dictate the PV observables in the three body system.

We have shown how to generalize the EFT(6π) treat-
ment of strong nucleon-nucleon interactions to include par-
ity violation. This is important so that present and future
PV experiments can be interpreted in a model-independent
systematic and consistent way. The EFT(6π) shown should
be valid at energies where the pion is not dynamical. This
restricts the analysis to energies below∼ m2

π/M. Fortu-
nately the NPDgamma experiment, circular polarized pho-
ton break-up, neutron spin rotation, etc. are planned in this
energy region.

Clearly more experiments are needed to test this de-
scription. But it is a first step towards creating the few body
PV EFT(6π) that can be used to compare to planned few-
body PV experiments. Only when both are available will
it be possible to check the consistency of the description,

and determine whether extant measurements are being in-
terpreted correctly.
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