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Abstract. Optical full-field measurement methods are increasingly used in the field of
experimental mechanics, and several techniques have been developped to make the most
of the redundancy of the measured fields. However, the number of modelling parameters
that can be retrieved is strongly connected to the noise level corrupting the measured
fields. Focusing on the techniques based on the construction of a statically admissible
field from the experimental data, a two-scales approach is proposed. It relies on the fact
that, using a finite-element description of the struture, the larger the number of degrees
of freedom to be measured, the more degraded by noise. It is therefore proposed to use
displacement fields measured at two different scales. This paper describes the way the
macro displacement fields basis is built.

1 Introduction

Optical full-field measurement methods are increasingly used in the field of experimental mechanics.
These techniques are now well established so that extensive knowledge about the mechanisms driving
the measurements quality is now available (for DIC measurements, see [1]). These methods provide a
very large amount of data, so that different techniques have been proposed to identify material prop-
erties using redundant or full-field kinematic data [2]. However, the number of parameters that can
be identified using these methods is directly related to the noise level degrading the measured field.
This can lead to either significant errors on the description or a poor resolution of the structure un-
der scrutiny, especially when this is extremely heterogeneous and/or subjected to an unknown loading
field (i.e. for MEMS devices [3]). The equilibrium gap method is first recalled, before a two-scales
approach is presented. The projection conditions to be satisfied by the macro displacement field basis
are then derived, and a procedure to build the projection operator is proposed. The method is then
illustrated on an example.

2 Mono-scale equilibrium gap method

One considers an elastic body, whose displacement is measured at several points x. For the sake of
brevity, only cantilever beams under transverse loading are considered in the sequel. One supposes a
stiffness field C(x) described by a finite number of functions di(x) and a scaling parameter C0 :

C(x) = C0

N∑

i=1

Didi(x) (1)

where N is the number of used functions and {Di}i=1...N the projection of the stiffness field onto the
defined basis. The structure is subjected to a loading field Qm(x), which is also described by a finite
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number S of functions ψms(x)

Qm(x) =

S∑

s=1

Fmsψms(x) (2)

{Lms}s=1...S is the projection of the loading field onto the defined basis. This results in a out-of-plane
displacement field vm(x) :

vm(x) =

K∑

k=1

Umkφmk(x) (3)

In the following, it will be assumed that the chosen basis are well suited to describe both stiffness,
loading and displacement fields. The previously proposed equilibrium gap method ([5]) then relies
on the finite element formulation of the direct problem : when the stiffness and loading fields are
known (through their projections D and Lm), the nodal displacement components Umk are computed
by solving

KmUm = Lm (4)

The components of the stiffness operatorKm read

Kmk,l = C0

N∑

i=1

Di

∫
di(x)

d2φmk(x)
dx2

d2φml(x)
dx2

dx (5)

and

Lmk =

S∑

s=1

Fms

∫
ψms(x)φmk(x)dx (6)

In order to identify the fields C(x) and Qm(x) from measured displacement fields, and contrary to
the resolution of the direct problem, the nodal displacement field Um is here considered as “almost”
known (i.e., measured)

Um ≃ Ûm (7)

The equilibrium conditions (4) are then recast as

Mm

(
Ûm

)
S = Km(S)Ûm − Lm(S) = R (8)

where S is the concatenation of the stiffness parameters D and the loading parameters Fm. The Eq.(8) is
solved for the non-trivial S by minimization of the residual R when the number of nodal displacements
used to write the equilibrium conditions is large compared to the number of parameters to identify.
When the number of unknowns in S increases, the Eq.(8) is solved by singular value decomposition
taking into account that under the assumption of linear behavior, the operator Mm is singular, and
the solution Ssol is obtained as the right singular vector associated to the least singular value [3]. The
sensitivity of this last procedure to the measurement noise has been assessed and has been found to
dramatically increase with the number of parameters to be identified, therefore limiting, for a given
measurement quality, the achievable description level. This is a critical issue when the structures and/or
the loadings are not well defined, for example when dealing with MEMS devices under environmental
loadings.

Equation (8) then defines a statically admissible displacement field. Any norm of the residual R
then provides a distance between the measured displacement field and its statically admissible pro-
jection. From its definition, finding a statically admissible displacement field is similar to finding the
stiffness and the loading related by this statically admissible displacement field.

3 Two-scales approach

3.1 Projection conditions

As this is likely to result in a large number of parameters to be identified, the problem is to find a robust
identification scheme. As one assumes that only displacement fields are measured, one will consider
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using different projections of the measured displacement field onto different basis, thus defining a
“macro”-measured displacement field vM(x) :

vM(x) =

P∑

p=1

UMpφMp(x) (9)

with P < K. For a given structure, described by the sets {Dn, Lms}, it is then worth noting that one has
two ways of computing the displacement projection {UMp} :

– The first one mimics the projection of the measured displacement field onto the reduced kernel
of displacement functions. The displacement field vm(x) is computed using the equilibrium condi-
tions at the micro-scale (Eq. (4)) and projecting the obtained displacement field onto the “macro”
displacement basis.

– The second way involves an homogenization procedure. Using a suitable macro stiffness matrix
KM, the macro displacement fields satisfies some macro equilibrium conditions :

KMUM = LM (10)

If the first way would be natural from the computing point of view, it is useless from the experimental
one since it requires unachievable data. The problem is then to define some conditions on the basis to
be used so that the second way will provide the same projected displacement field than the first way.

Let us define the projection operatorW so that the function basis at the macro and micro scales
are related through

φMp(x) =

K∑

k=1

Wpkφmk(x) (11)

W is therefore defined by P × K coefficients. Starting with the first way, the displacement field at the
macro scale Uk⋆

M derived from a test displacement field at the micro scale U⋆
m is simply obtained by

projection onto the macro basis. Minimizing a least-square norms yields

WHWtUk⋆
M = AMUk⋆

M =WHU⋆
m (12)

whereH is defined by

Hi j =

∫
φmi(x)φm j(x)dx (13)

On the other hand, the stiffness matrix at the macro scale KM is obtained by expressing the strain
energy in the micro stiffness field and the macro displacement field. The definition (11) then yields

KM =WKmW
t (14)

The macro loading term LM is also obtained by writing the work of the micro loading field in the
macro displacement field

LM =WLm =WKmU⋆
m (15)

The displacement field at the macro scale Us⋆
M is therefore defined as satisfying

KMUs⋆
M = LM (16)

The displacement field Uk⋆
M is the one that is measured when using a reduced functions kernel (that is

with a reduced noise sensitivity), whereas Us⋆
M satisfies the equilibrium conditions at the macro scale

as long as these are satisfied at the micro scale. Finding an operatorW so that

Uk⋆
M = Us⋆

M (17)
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allows one to get equilibrium conditions at the macro scale (on the parameters at the micro scale) from
displacement fields measured at the macro scale, so that these are less corrupted by the measurement
noise. The condition (17) then yields

WKm

(
WtA−1

MWH − I
)

Um =WKm·Gm = 0 (18)

The condition (18) is satisfied for any stiffness field if Gm belongs to stiffness operator nullspace K⊥m .
As the stiffness operator is obtained without use of any a priori boundary condition on the displacement
(since the latter are measured), K⊥m is composed of the structure rigid-body motions. It is therefore
straightforward to define the operator R⊥ so that

Rt
⊥·Gm = 0 (19)

One therefore has to define the projection operatorW satisfying Eq.(19) for some user-defined test
displacement fields U⋆

m.

3.2 Projection operator computation

Considering the singular value decomposition ofH

H = VEVt (20)

the projection operatorW is sought as
W = PVt (21)

The problem turns then to find the operator

G = Pt
(
PEPt

)−1
P (22)

satisfying
VGEVtU⋆

m = U⋆
m + Rr0 (23)

where Rr0 is a linear combination of the rigid body motions subspace. Defining G through its singular
value decomposition

G = VsDsV
t
s (24)

Vs is orthogonal,Ds is diagonal, and a solution reads

P =Vt
s (25)

provided that
Vt

sEVs = D−1
s (26)

Focusing on cantilever beams under flexure loading,Vs can be computed using a single test displace-
ment field U⋆

m. Defining

Z1 =
EVtU⋆

m

‖EVtU⋆
m‖

(27)

Z2(r0) =
Vt (U⋆

m + Rr0
)
− Zt

1V
t (U⋆

m + Rr0
)

Z1

‖Vt
(
U⋆

m + Rr0
)
− Zt

1V
t
(
U⋆

m + Rr0
)

Z1‖
(28)

the problem turns to find γ and r0 so that

Vt
s =

[
cos(γ) sin(γ)
− sin(γ) cos(γ)

] [
Zt

1
Zt

2(r0)

]
(29)
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satisfies Eq.(22) under the constrain defined by Eq.(26). It can be proved that the set

r0 = 0 (30)

γ =
1
2

tan−1

(
2Z2(0)tEZ1

Zt
1EZ1 − Z2(0)tEZ2(0)

)
(31)

satisfies Eq.(22) and Eq.(26). The above described procedure can be repeated to allow Eq.(23) to be
satisfied by P

2 distinct U⋆
m test displacement fields, considering orthogonal subspaces. It’s worth noting

the strain energy computed from the micro and macro displacement fields are then equal for the chosen
U⋆

m.

3.3 Example

The above described procedure is illustrated using a cantilever beam meshed by 8 elements on which
the displacement is projected onto cubic Hermite functions (four degrees of freedom per element).
The cantilever is clamped at one end and is free at the other. Numbering the elements from n = 1 to
n = 8 when moving from the clamping to the free end, the stiffness is assumed to be constant on each
element and to linearly decrease when moving away of the clamping, so that the bending stiffness of
the element n reads

(EI)n = (EI)0

(
0.9 −

n
10

)
(32)

The cantilever is assumed to be loaded by a single transverse force applied to the last node.

Fig. 1. a) Micro-scale displacement field used as an example b) Micro-displacement field basis.

The resulting displacement field (see Fig.1a) is described by 18 degrees of freedom. This displace-
ment field basis is used as the micro-scale displacement fields basis (see Fig.1b) and is then used to
examplify the above defined procedure. The first macro displacement fields basis is obtained using 4
dofs. Two test displacement fields are therefore used, namely U⋆

m = Ûm and U⋆
m = V18 where V18 is

the last column ofV, that is the dominant mode of the covariance matrix.
Fig. 2a shows the obtained displacement fields basis for 4 macro degrees of freedom. These macro

degrees of freedom are those to be used when writing the equilibrium gap matrix at the macro scale,
thus limitimg the effect of the measurement noise. Considering two additional macro dofs, the dis-
placement fields basis shown on Fig. 2b is obtained by adding U⋆

m = V17. It can be shown this second,
richer basis includes the basis obtained with 4 dofs, thus illustrating the construction of displacement
fields basis families from the proposed method.
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Fig. 2. a) Macro-scale displacement field basis obtained using a single macro element b) Macro-scale displace-
ment field basis obtained using 2 macro elements.

4 Conclusion

A two-scales approach for the equilibrium gap method is presented. The projection conditions to
be satisfied by the macro displacement field basis have been derived, and a procedure to build the
projection operator is proposed. Various strategies can then be drawn in order to get the more robust
identification procedure.
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