Abstract. The NA60 experiment, at CERN SPS, has studied muon pairs production in p-A and A-A collisions at 158 GeV. After an introduction to explain why the dimuon measurements are a useful tool to investigate the formation of a deconfined medium and how these measurements can be performed, from an experimental point of view, a review of the status of the field is presented, with particular emphasis on the NA60 results. The NA60 experimental apparatus, in fact, allows to perform high precision measurements, and therefore to obtain high quality results. Concerning the so called “low mass region” (0.2 < M_μμ < 2.5 GeV), an excess above the yield expected from known meson decays is observed in In-In collisions and interpreted as thermal radiation, dominated by π annihilation through the ρ. Furthermore, the associated space-time averaged ρ spectral function shows a strong broadening, but no shift in mass. The extraction of the inverse slope parameter T_eff, from the transverse momentum spectra, allows an even deeper understanding. T_eff rises with mass up to the ρ, followed by a sudden decrease. While the initial rise is consistent with the expectations for the radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow, which may be of partonic origin. The “high mass region” (M_μμ > 2.9 GeV) is dominated by the J/ψ whose suppression is usually considered one of the main signatures for the formation of a deconfined medium. However also cold nuclear matter effects, not related to the hot matter, may reduce the J/ψ yield. Therefore, the study of p-A collisions allows the determination of the J/ψ behaviour in cold nuclear matter, representing the reference with respect to which the J/ψ yield in A-A collisions must be compared. NA60 results show that indeed an “anomalous suppression” is present in central In-In collisions. However, it is clear that to correctly quantify the amount of suppression exceeding the one due to cold nuclear matter, a precise determination of this reference must be performed. To advance in this direction, NA60 has also collected high quality p-A data at the same energy as the one of the A-A interactions.

References

* e-mail: arnaldi@to.infn.it

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited.
J/ψ suppression and low mass dileptons in the NA60 experiment

Roberta Arnaldi
INFN - Torino

Dense Matter in Heavy Ion Collisions and Astrophysics

JINR, Dubna, Russia
July 14-26 2008

Outline

1. **What does the NA60 experiment study?**
 NA60 is a fixed target experiment at CERN SPS, which studies dileptons produced in
 - p-A collisions @ 158 GeV and 400 GeV
 - In-In collisions @ 158 GeV

2. **Why do we study dileptons?**
 look for signatures of QGP formation

3. **How can we study dileptons?**
 basic requirements to be satisfied building a dilepton experiment

4. **Recent NA60 results on:**
 - J/ψ
 - Low mass region
Why and how we study dileptons…

What do we want to study?
What do we want to study?
We want to study the transition from nuclear matter to a deconfined state of quarks and gluons (QGP), predicted by QCD at high enough temperature and density.
This transition occurred in the earliest stages of the evolution of the Universe.

How can we study this status of the matter in the laboratory?
With experiments colliding high-energy heavy nuclei, to produce hot and dense strongly interacting matter over extended volumes and lasting a finite time.
Studying the created matter with a probe

How can we observe the properties of the created matter?

We study how the matter produced in heavy ion collisions affects well understood probes as a function of the temperature of the system

Find a good probe and calibrate it

Which probe should we use to test the QCD matter?

- vacuum: Well understood in pp collisions
- hadronic matter: Slightly affected by the hadronic matter and in a well understood way
- QGP: Strongly affected by the deconfined medium

The probe must be produced early in the collision evolution, so that it is there before the matter to be probed

What else do we need?

- another probe not affected by the dense QCD matter, to be used as a baseline reference
- “trivial” collision systems, to understand how the probe is affected by the “new physics”
Dileptons: tool for QGP study…

We now focus on those probes which we can investigate by studying the invariant mass spectrum reconstructed from their decay into lepton pairs

- Dileptons directly probe the entire space-time evolution of the fireball, since they are continuously emitted during the evolution.

- Since they are not subject to strong interactions, they are not significantly affected by the medium at later stages of the collision and they freely escape from the interaction zone.

…but there are also problems

Lots of physics processes contribute to the dilepton mass spectrum

2 consequences

- The physics content is very rich, but it is not easy to disentangle trivial and “interesting” sources (especially in the continuum)

- Even for interesting sources we measure an integral yield over the various stages of the collision: which dileptons do come from the deconfined phase?
How do we measure dileptons?

- **Which elements should be taken into account when designing a dimuon experiment?**
 - **Mass resolution**
 → Necessary in order to separate resonances close to each other
 - **Vertexing accuracy**
 → Necessary in order to separate prompt from displaced sources
 - **Running at high luminosity**
 → Necessary to measure rare processes (as the ones involving dileptons)
 - **Acceptance window**
 → Crucial to address certain physics observables (e.g. low mass continuum)
 - **Background level**
 → Fundamental for continuum analysis
 - **Centrality determination in A-A collisions**
 → Important to distinguish central collisions, where conditions for QGP formation may be reached

Let's analyze typical dimuon set-ups

Standard way of measuring dimuons

(NA50, PHENIX, ALICE...)

- Place a huge hadron absorber to reject hadronic background
- Implement a trigger system, based on fast detectors, to select muon candidates (1 in 10^4 interactions, in Pb-Pb collisions at SPS energy)
- Reconstruct muon tracks in a spectrometer (magnetic field + tracking detectors)
- Correct for multiple scattering and energy loss
- Extrapolate muon tracks back to the target
 → Vertex reconstruction is usually rather poor ($\sigma_z \sim 10$ cm)
Consequences of a limited mass resolution

Difficult to see the ψ' as a shoulder of the J/ψ
Impossible to separate p and ω

Christensen et al.,

p-U → μμ
at 20-30 GeV

~600 MeV mass resolution

V. DISCUSSION OF RESULTS
A. Nonobservation of Resonances

The invariant mass of the muon pair was the variable of primary interest for simultaneous
and, of course, highly related search made for “resonant” states. Any massive vector mesons
would be expected to enhance the continuum near the resonance mass. As seen both in the observed
mass spectrum (Fig. 4) and in the resultant cross sections dσ/dq (Figs. 5-10) there is no forcing
evidence of any resonant structure.

Possible solutions

Radical solution: eliminate the hadron absorber
Done by E789 when measuring ψ' in p-Au at 800 GeV
16 MeV dimuon mass resolution at the J/ψ

Drawbacks:
- no dimuon continuum physics
- tracking chambers overwhelmed with hadron tracks

Add a vertex detector and match the muon tracks to tracks in the target region
Done by HELIOS-1
20 MeV dimuon mass resolution at the ω

Drawbacks:
- worked only for p-Be at 450 GeV
- in p-W there were too many tracks in the drift chambers

Presently being done by NA60, with silicon tracking planes, even in the high multiplicity environment of central heavy-ion collisions, thanks to radiation tolerant silicon pixel detectors
NA60: a second generation experiment

The NA60 concept:

Use a silicon tracker in the vertex region to track muons before they suffer multiple scattering and energy loss in the hadron absorber.

These tracks are matched in coordinate and momentum space with those of the muon chambers

- Improve mass resolution
- Determine origin of the muons

Smearing sources

Why is track matching so important in the improvements of the resolution?

The invariant mass resolution for the muon spectrometer has two components:

- Multiple scattering dominates the resolution for low momentum muons

\[\theta_s = \frac{21.2 \text{ MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} \]

The variance \(\theta_s \) of the angle distribution is proportional to \(1/p \)

- At \(m_{\mu\mu} \approx 1 \text{ GeV} \), track matching is a very effective way for increasing the momentum resolution

- This is no more the case at \(m_{\mu\mu} \approx 3 \text{ GeV} \) where multiple scattering contribution is no more important

Tracking accuracy which dominates the resolution at high momenta (\(\delta p/p \) proportional to \(p \))

\[\frac{\delta p}{p} = \sqrt{\frac{720}{N + 5 \cdot L^2}} \cdot \frac{\varepsilon}{0.3 \cdot B} \]
Improvement in mass resolution

NA60 p-A at 400 GeV

NA60 InIn @ 158 GeV

* From 70 to 20 MeV at \(m_{\mu\mu} \sim 1 \text{ GeV} \)

Vertex resolution

The selection of the target where the interaction took place requires a **good** z-vertex resolution in NA60: \(\sim 200 \mu \text{m} \)

Good accuracy on the determination of the transverse coordinates of the interaction point is needed to separate the prompt dimuons from the charm decays in NA60: \(\sim 20 \mu \text{m} \)
High luminosity

Achieving good statistics in the study of rare processes requires the highest possible luminosities:

→ high beam intensities incident on thick targets

Problems:

<table>
<thead>
<tr>
<th>High beam intensity requires:</th>
<th>Thick target (> 10-20% λ_i) implies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fast detectors (especially the ones on the beam line, such as beam hodoscopes and ZDCs)</td>
<td>• Interaction pile-up and/or reinteraction</td>
</tr>
<tr>
<td>• Radiation hard detectors</td>
<td>→ May significantly bias the centrality measurement</td>
</tr>
<tr>
<td>• Efficient beam pile-up rejection</td>
<td>Depending on the centrality detector</td>
</tr>
<tr>
<td></td>
<td>- a peripheral event may be seen as central (multiplicity)</td>
</tr>
<tr>
<td></td>
<td>- a central event may be seen as peripheral (forward energy)</td>
</tr>
</tbody>
</table>

A reasonable limit has to be chosen, to keep systematics induced by these effects at a reasonable level.

NA60 values for In-In collisions @ 158 GeV:
Beam intensity of 5×10^7 ions/burst with 5s burst on 18% λ_i target
→ Luminosity $\sim 10^{35}$ cm$^{-2}$

Trigger

High luminosity → High interaction rate

If one wants to collect every interaction
• Enormous amount of (useless) events
• Dead time ~ 100
• Impossible to study rare processes

Need a fast and very selective trigger system to collect only interesting events among the many collisions

NA60 trigger:
→ fully based on NIM/CAMAC electronics

• Identify two muon candidates by means of coincidences between scintillators
• Fast (decision in < 500 ns)
Acceptances

Acceptance is the probability that a dimuon produced with certain kinematical values \((m, y, \mathbf{p}_T, \cos(\theta))\) is detected by the experiment. It’s a multidimensional function of several variable, as \(\mathbf{p}_T\), \(y\), \(\cos(\theta)\), mass e.g. the acceptance as a function of dimuon \(\mathbf{p}_T\) depends on the distribution that we have assumed for the other kinematical variables.

Usual acceptance evaluation technique (1-D approach)

- Generate events according to some theoretical model and track them in the apparatus
- Reconstruct the events through a Monte Carlo simulation program, reproducing the detector limitations and the analysis selection procedure
- Get the acceptance as a function of the kinematical variable \(i\) as

\[
A(i) = \frac{N_{\text{reconstructed}}(i)}{N_{\text{generated}}(i)}
\]

Background sources

In order to understand the physics signal it’s important to have under control the background contributions.

In the standard dimuon experiment main sources of background are the (uncorrelated) decays of \(\pi\) and \(K\)

\[\rightarrow\] minimized by having the hadron absorber as close as possible to the collision point.

Which subtraction techniques are used for the combinatorial background?

- use measured \(\mu^+\mu^+\) and \(\mu^-\mu^-\) distributions

\[
N^{++} = 2\sqrt{N^{++}N^{--}}
\]

if acceptance is symmetric and no charge correlation between particles decaying into muons (true for high multiplicity events)

- event mixing technique

combining \(\mu^+\) and \(\mu^-\) belonging to different events in such a way as to account acceptance and trigger conditions

In the experiments, as NA60, where the muons are matched to tracks in the vertex region:

- Strong reduction of the combinatorial background (e.g. \(S/B = 1/7\) for \(M<2\text{ GeV}\))
- But fake matches exist
Fake matches

Fake match: muon matched to a wrong track in the vertex telescope

Can be important in high multiplicity events (negligible in pA or peripheral AA)

Simple technique: match with the smallest χ^2 is retained. But is it correct or fake?

Fake matches can be studied and subtracted using an overlay Monte Carlo:
- MC muons are superimposed to real events (in the vertex telescope)
- Reconstructed as real events, fake matches can be tagged and the fraction relative to correct matched muons is then evaluated

NA60:
$M\sim 1\text{ GeV} \rightarrow$ background from fake matches is factor 15 smaller than comb$_1$bck.
$M\sim 3\text{ GeV} \rightarrow$ background from fake matches is negligible

Centrality determination

Why do we want to measure the centrality of the collisions?

This information is useful, since in A-A collisions the conditions for QGP formations occur most likely in central interactions

Centrality estimators
- Impact parameter, b
- N. of nucleons participating to the collisions, N_{part}
- Number of collisions, N_{coll}
- ...

They are not directly accessible in the experiments.

Experimentally, to obtain centrality information:
- we measure quantities which have a centrality dependence, as
 - the number of tracks measured in the vertex telescope
 - the energy released by nucleons not taking part to the collisions in a zero degree calorimeter
- we relate these quantities to the centrality estimators taking into account that the quantities we measure are affected by the experimental resolution

The relation between these variables is established within the Glauber model
Centrality measurement: \(E_{ZDC} \)

Example: centrality determination from the energy released in the Zero Degree Calorimeter (ZDC)

The ZDC measures the energy of the (spectator) nucleons which have not taken part to the collision (\(N_{\text{spect}}(b) \))

\[
N_{\text{spect}}(b) = A - N_{\text{part}}(b)/2
\]

We have to define the relation between \(E_{ZDC} \) and the centrality variables

\[
E_{ZDC} = N_{\text{spect}}(b) \times 158 \text{GeV} + \alpha N_{\text{part}}(b)
\]

The free parameters in the relation, to take into account

- the small contribution of secondary particles emitted in the ZDC angular acceptance (\(\eta > 6.3 \))
- the smearing due to the ZDC experimental resolution (~9% at the peak)

are tuned on the data

Once the correlation between \(E_{ZDC} \) and \(N_{\text{spect}} \) is found, using the Glauber model we can estimate the corresponding \(N_{\text{Part}}, L, N_{\text{Coll}} \ldots \)

Glauber model

Geometrical model to describe the collision between two nuclei with impact parameter \(b \)

Assumptions: Nucleus-nucleus collisions are described as a superposition of independent nucleon-nucleon collisions

Ingredients:

- the nucleon-nucleon inelastic cross-section (~30mb at SPS energies)
- the nuclear profile densities e.g. a Wood-Saxon distribution

Output:

Allow to obtain several information as a function of the impact parameter \(b \):

- number of participant nucleons
- number of collisions
- overlap region
- …
To summarize...

- **How NA60 deals with the elements needed to design a dimuon experiment?**
 - **Mass resolution**
 - thanks to the matching from 70 to 20 MeV at $m_{\mu\mu} \sim 1$ GeV
 - from 100 to 70 MeV at $m_{\mu\mu} \sim 3$ GeV
 - **Vertexing accuracy**
 - 200 μm in the z direction and 20 μm in the transverse coordinates
 - **High luminosity**
 - compromise between high luminosities and problems connected with it
 - **Acceptance window**
 - good acceptance coverage down to low m and p_T
 - **Background level**
 - under control, fundamental, in particular, for continuum analysis
 - **Centrality determination in A-A collisions**
 - possible to define the centrality with good accuracy

- **NA60 has optimized the chance of detecting dileptons with respect to the previous generation experiments**

Some photos of the NA60 apparatus...
The invariant mass spectrum

Now that we have seen how an experiment can detect dimuons, which probes can we study in order to search for the QGP phase transition?

Origin of the low-mass excess, connected with chiral symmetry restoration?

Origin of the intermediate mass excess, connected with thermal dilepton production?

Origin of the J/ψ suppression, comparing results obtained in several colliding systems

The High Mass region
The charmonium

What is the charmonium?

It’s a bound $c\bar{c}$ state stable under strong decay

- $m_c\sim 1.3$ GeV
- $m_{c}\ll 2m_{D}$ where D is the open charm meson

3.8 GeV

$^{3}S_1$ \hspace{1cm} $\psi(2S)$ or ψ'

$^{3}P_2$ \hspace{1cm} χ_2

$^{3}P_1$ \hspace{1cm} χ_1

$^{3}P_0$ \hspace{1cm} χ_0

mass

3 GeV

$^{3}S_1$ \hspace{1cm} J/ψ

spin

$^{2S+1}L_J$

orbital total

The binding of the c and $c\bar{b}$ quarks can be expressed using the potential:

$$V(r) = -\frac{\alpha}{r} + kr$$

Coulombic contribution, induced by a gluon exchange between q and qbar

Debye screening

What happens to a $c\bar{c}$ pair placed in the QGP?

The QGP consists of deconfined colour charges

\rightarrow the binding of a $q\bar{q}$ pair is subject to the effects of colour screening

Two effects affect the $q\bar{q}$ pair in a QGP medium:

- The “confinement” contribution disappears
- The high color density induces a screening of the coulombic term of the potential

$$V(r) = -\frac{\alpha}{r} + kr$$

$$V(r) = -\frac{\alpha}{r} e^{-r/\lambda_D}$$
Debye screening (2)

The screening radius $\lambda_D(T)$ (i.e. the maximum distance which allows the formation of a bound cc pair) decreases with the temperature T.

At a given T:
- If resonance radius $< \lambda_D(T)$, resonance can be formed
- If resonance radius $> \lambda_D(T)$, no resonance can be formed

Charmonium suppression

This is the idea behind the suggestion (by Matsui and Satz) of the J/ψ as a signature of QGP formation.
Sequential screening

The charmonium states can be characterized by:
- the binding energy
- radius

<table>
<thead>
<tr>
<th>state</th>
<th>J/ψ</th>
<th>χ_c</th>
<th>ψ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass(GeV)</td>
<td>3.10</td>
<td>3.53</td>
<td>3.68</td>
</tr>
<tr>
<td>ΔE (GeV)</td>
<td>0.64</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>r_0 (fm)</td>
<td>0.25</td>
<td>0.36</td>
<td>0.45</td>
</tr>
</tbody>
</table>

More bound states have smaller size.

The Debye screening condition $r_0 > \lambda_D$ will occur at different temperatures.

Charmonium decay and feed-down

$J/\psi(1S)$ DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_i/Γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1 hadrons</td>
<td>(87.7 \pm 0.7) %</td>
</tr>
<tr>
<td>Γ_2 virtual $\gamma \rightarrow$ hadrons</td>
<td>(13.0 \pm 0.3) %</td>
</tr>
<tr>
<td>Γ_3 e^+e^-</td>
<td>(5.93 \pm 0.00) %</td>
</tr>
<tr>
<td>Γ_4 $\mu^+\mu^-$</td>
<td>(5.93 \pm 0.00) %</td>
</tr>
</tbody>
</table>

$\psi(2S)$ DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_i/Γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1 hadrons</td>
<td>(97.65 \pm 0.13) %</td>
</tr>
<tr>
<td>Γ_2 virtual $\gamma \rightarrow$ hadrons</td>
<td>(1.37 \pm 0.14) %</td>
</tr>
<tr>
<td>Γ_3 e^+e^-</td>
<td>(0.73 \pm 0.08) $\times 10^{-3}$</td>
</tr>
<tr>
<td>Γ_4 $\mu^+\mu^-$</td>
<td>(0.80 \pm 0.03) $\times 10^{-3}$</td>
</tr>
<tr>
<td>Γ_5 e^+e^-</td>
<td>(0.80 \pm 0.03) $\times 10^{-3}$</td>
</tr>
</tbody>
</table>

Decays into $J/\psi(1S)$ and anything:

Γ_7 $J/\psi(1S)$ anything (56.9 \pm 0.9) %

$\chi_c(1P)$ DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_i/Γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_4 $\gamma J/\psi(1S)$</td>
<td>(16.0 \pm 1.0) %</td>
</tr>
</tbody>
</table>

- In NA60 J/ψ are studied through their decay:
 $J/\psi \rightarrow \mu^+\mu^-$

- Many of the measured J/ψ mesons are produced by the decay of other particles: χ_c, ψ'

- Taking into account the measured production rates and the resonances branching ratios, we obtain:

$N_{J/\psi}^{\text{meas}} = N_{J/\psi} + N_{J/\psi \rightarrow J/\psi X} + N_{J/\psi \rightarrow \chi_c X}$

- Feed down may affect physical conclusions
Reference collision systems

How can we say that we observe a suppression of the J/ψ?

We need an unsuppressed reference (to set a baseline)

J/ψ production in pp collisions

How can we understand if the suppression that we observe in nucleus-nucleus collisions is due to trivial sources or not?

We need a large systematics from p-p to p-A to A-A collisions (with various projectile-target combinations), collected in the same kinematical domain

A suppression effect already visible in p-A and then smoothly increasing in A-A is hardly due to a genuine deconfinement effect

Reference physics processes

It is also important to have an unsuppressed reference process that can be used for an easier normalization of the J/ψ yield

The chosen reference must

* have a production mechanism as close as possible to the J/ψ one (g-g fusion)
* not be sensitive to the created medium

Drell-Yan:

- very robust on theory grounds
- lacks statistics at the SPS and is buried under charm/beauty decays at RHIC/LHC
- probes the q/anti-q distributions, not the gluons which produce charmonium states

Open Charm:

- its production mechanism is similar to the J/ψ one
- heavy flavor production may also be affected by "new physics"
The Drell-Yan

- At SPS energies, Drell-Yan is often used as a reference for J/ψ studies
- Its production cross section is proportional to the number of binary nucleon-nucleon collisions

- The DY cross section per nucleon-nucleon is constant, both in p-A and A-A collisions
- Drell-Yan is not sensitive to initial/final state effects
- Studying J/ψ /DY → common systematic errors cancel out

What happens if the resonance is not well chosen?

- When the reference is not accurate, conclusions are often biased

As an example: first results from NA38 → J/ψ suppression in O-U collisions

- Nuclear absorption was not accurately known
- Seemed to be not enough to explain the data!

- QGP ?
- Hadronic comovers ? → Both conclusions were wrong!
What happens to a J/ψ in A-A collisions?

What happens to a J/ψ produced in A-A collisions?

At SPS energies J/ψ has been studied by

- NA38 \rightarrow S-U collisions @ 200GeV
- NA50 \rightarrow Pb-Pb collisions @ 158 GeV
- NA60 \rightarrow In-In collisions @ 158 GeV

To understand what happens to a J/ψ in A-A collisions, first of all, according to what we have previously discussed, we need to answer the following question:

What happens to a J/ψ produced in p-p and p-A collisions?

In fact, in p-p and p-A collisions the conditions required for the QGP formation are not satisfied \rightarrow p-A and p-p data provide us a fundamental reference to understand the J/ψ behaviour in A-A collisions

To set this reference, at SPS energies several measurements have been done:

- NA38/NA51/NA50:
 450 and 400 GeV protons on p, d and nuclear targets
- NA60:
 400 and 158 GeV protons on nuclear target

J/ψ in p-A collisions

p-A collisions at SPS do not reach the conditions for QGP formation \rightarrow hence no J/ψ suppression is, in principle, expected

However, there is a significant reduction of the number of J/ψ produced in nucleon-nucleon collisions

J/ψ are absorbed by the “normal nuclear matter”

How can we estimate the J/ψ absorption cross section in nuclear matter?

Once produced, the J/ψ has to cross the length L of nuclear matter, before exiting the nucleus, and, during the crossing, it can be absorbed (interacting with the nucleons).

If the nuclear absorption cross section is $\sigma_{abs}^{J/\psi}$, the J/ψ cross section in p-A can be written as

$$\sigma_{pA}^{J/\psi} = A \sigma_{pp}^{J/\psi} e^{-\sigma_{abs}^{J/\psi} pL}$$
Normal nuclear absorption

\[\sigma_{J/\psi}^{pA} = A \sigma_{pp}^{J/\psi} \sigma_{\text{abs}}^{J/\psi} \mu_L. \]

\(\sigma_{\text{abs}}^{J/\psi} \) and the \(\sigma_{pp}^{J/\psi} \) can be extracted from a Glauber calculation which describes the p-A data.

\[\chi^2/\text{ndf} = 0.7 \]

\[\chi^2/\text{ndf} = 1.4 \]

Of course, less bound states, as the \(\psi' \), will have a larger \(\sigma_{\text{abs}} \) \(\sigma_{pA}^{\psi'} > \sigma_{pA}^{J/\psi} \)

The \(J/\psi \) normal nuclear absorption is also present in A-A collisions, it has to be taken into account in order to understand if there is a further \(J/\psi \) suppression, on top of it, maybe due to QGP

Caveat

CAVEAT: • p-A data have been collected at 400/450 GeV
• A-A data have been collected at a lower energy (i.e. 158 GeV)

A rescaling procedure has to be applied in order to take into account the different energy, different phase space domain

Main assumptions used up to now

• \(\sigma_{\text{abs}}^{J/\psi} \) does not depend on energy
• the slope of the nuclear absorption reference is fixed

\(\sigma_{\text{abs}}^{J/\psi} @158\text{GeV} = \sigma_{\text{abs}}^{J/\psi} @400/450\text{GeV} \)

• \(J/\psi \) production \(\sigma \) depends on energy
• the normalization of the nuclear abs. reference is rescaled with the help of older data at 200 GeV and using a parameterization (“Schuler”) of energy and kinematical dependence of \(J/\psi \) production \(\sigma \)

for the first time NA60 has collected pA data at the same energy as the one of the A-A collisions
What is σ_{abs}?

What really is $\sigma_{\text{abs}}^{J/\psi}$?

- It is not a real cross section for charmonium absorption by nucleons in the nucleus. It is rather an effective quantity used to parametrize all initial and final state nuclear effects.

- What is crossing the nucleus? → Mainly theoretical problem
 * pre-resonant cc state, fully formed resonance

- Are we measuring primary J/ψ? → Mainly experimental problem
 * feed-down from ψ' and χ_c

If $\sigma_{\text{abs}}^{J/\psi} \neq \sigma_{\text{abs}}^{\psi'} \neq \sigma_{\text{abs}}^{\chi_c}$

- Can we use $\sigma_{\text{abs}}^{J/\psi,\text{eff}}$ obtained in p-A collisions as a baseline for nuclear absorption in A-A collisions?

- Could be partly biased, since the fraction of measured J/ψ coming from higher-lying resonances can vary between p-A and A-A, due to different suppression mechanisms in the two systems.

Normal nuclear absorption in A-A collisions

From p-A data we obtain $\sigma_{\text{abs}}^{J/\psi}$ and the $\sigma_{pp}^{J/\psi}$ needed to define the J/ψ normal absorption contribution.

We need to extrapolate the normal nuclear absorption from p-A to A-A collisions and to obtain its centrality dependence.

The nuclear absorption curve as a function of centrality, in A-A collisions, is obtained:

- computing the J/ψ survival probability to the crossing of the nuclear matter as a function of the impact parameter b, using the Glauber model

- linking the impact parameter with a experimental quantity related to the centrality of the collisions (for example the energy E_{ZDC} released in a zero degree calorimeter)
Previous J/ψ results (NA38/NA50)

What was the J/ψ scenario “before NA60”?

The J/ψ yield is compared to the Drell-Yan which is not affected by the created medium.

![Graph showing J/ψ suppression in In-In collisions](image)

J/ψ suppression in In-In collisions

Now we can study the J/ψ yield in In-In collisions, to be compared

- with the expectation of the normal nuclear absorption
- with the previous J/ψ results

Two different approaches have been used by NA60 to investigate the centrality dependence of the J/ψ production. They correspond to two different ways of normalizing the J/ψ yield.

- Study of the ratio J/ψ / DY (as done by NA50)
- Study of the J/ψ sample standalone

Different event selections are applied, according to the analysis approach, e.g.

- J/ψ / DY analysis → matching is not required, in order not to lose DY events because of the matching efficiency
- J/ψ analysis → matching is required, in order to have a “clean” sample of J/ψ

Current interpretation:

- p-A → define the J/ψ absorption in cold nuclear matter
- S-U → no anomalous suppression
- Pb-Pb → J/ψ anomalous suppression, increasing with centrality

Let’s move to the NA60 In-In results!
J/ψ / Drell-Yan

How can we extract the number of J/ψ and DY events?

- **Signal mass shapes from Monte Carlo (PYTHIA and GRV94 LO pdf)** reconstructed as the real data
- **Combinatorial background from π and K decays (<3% contribution under J/ψ)**

With a multi-step fit:

- **a) M > 4.2 GeV**: normalize the DY
- **b) 2.2 < M < 2.5 GeV**: normalize the charm (with DY fixed)
- **c) 2.9 < M < 4.2 GeV**: get the J/ψ yield (with DY & charm fixed)

J/ψ events ~ 45000

DY events (M>4.2 GeV) ~ 320

Limited DY statistics prevents from a detailed study versus centrality within this approach

J/ψ / Drell-Yan (2)

We observe a decrease of the J/ψ / DY versus centrality

To quantify the amount of suppression not due to cold matter effects we plot

Anomalous suppression is present in In-In collisions

Reasonable agreement with previous Pb-Pb data

but more quantitative conclusions are prevented by the reduced DY statistics

need to study the centrality dependence of the J/ψ yield with another analysis approach
Directly compare data to the expected J/ψ centrality distribution, calculated assuming nuclear absorption (with $\sigma_{\text{abs}} = 4.18$ mb) as the only suppression source.

~ 29000 J/ψ \rightarrow study of the J/ψ centrality dependence no more limited by low Drell-Yan statistics.

The absorption curve has no absolute normalization. Therefore require the ratio measured/expected, integrated over centrality, to be equal to the same quantity from the (J/ψ)/DY analysis (0.87 ± 0.05).

As already observed with the previous analysis approach:

Observed J/ψ suppression exceeds nuclear absorption.

Compare the J/ψ pattern with the expectation from the nuclear absorption curve:

Onset of the suppression at Npart ~ 100

Small statistical errors.

Careful study of systematic errors is needed.

Sources:

- Uncertainty on normal nuclear absorption parameters ($\sigma_{\text{abs}}(J/ψ)$ and $\sigma_{\text{pp}}(J/ψ)$)
- Uncertainty on relative normalization between data and absorption curve
- Uncertainty on centrality determination (affects relative position of data and abs. curve)
 - Glauber model parameters
 - E_{ZDC} to Npart

- $\sim 10\%$ error centrality indep. \rightarrow does not affect shape of the distribution

- (Most) Central points affected by a considerable error

R. Arnaldi et al. (NA60), PRL 99, 132302 (2007)
Comparison with NA50 Pb-Pb

- Good agreement with Pb-Pb in the common N_{part} region
- Anomalous suppression sets in at $\varepsilon \sim 1.5$ GeV/fm3 ($\tau_0 = 1$ fm/c)

What is the best scaling variable for the onset?
→ Clear answer requires more accurate Pb-Pb suppression pattern

Theoretical models

Which are the medium effects on a produced quarkonium?

Suppression by comover hadrons
Charmonium can be dissociated through interactions with hadrons in the medium formed in the collisions.

- Main feature of the comover approach: smooth dependence on centrality
- Many free parameters to be fixed, to reasonable values, from the experimental data

Suppression by color screening
Charmonium is dissociated by color screening, as already discussed. Discussion on the dissociation temperatures is on going (potential models, lattice QCD calculations…)

- Onset for the suppression

Enhancement by recombination
In the QGP hadronization, charmonium formation can occur by binding a c and a \bar{c} bar from different nucleon-nucleon collisions, as well as from the same. This recombination is possible only if heavy quark multiplicity is high

- Enhancement of J/ψ production
- At SPS energies, charm multiplicity ~ 0.2 → no recombination is possible
Comparison of data and theoretical models

Suppression by hadronic comovers ($\sigma_{co} = 0.65$ mb, tuned for Pb-Pb collisions)

Dissociation and regeneration in QGP and hadron gas

Percolation, with onset of suppression at $N_{part} \sim 140$

- Size of the anomalous suppression reasonably reproduced
- Quantitative description not satisfactory

Theoretical “postdictions”

- Compare J/Ψ yield to calculations assuming
 - Nuclear absorption
 - Maximum possible absorption in a hadron gas (T=180 MeV)
 - Extra-suppression in Pb-Pb and (to a lesser extent) in In-In

- Based on HSD transport approach
- Size of comover absorption fitted on NA50 Pb-Pb data
- Quantitative description not satisfactory for both scenarios
Comparison with RHIC results

\[R_{AA} \]

Nuclear modification factor

- PHENIX, Au+Au, |y|<0.35, ±12% syst.
- NA50, Pb+Pb, 0<|y|<1, ±11% syst.
- NA49, S+U, 0<|y|<1, ±11% syst.

- NA38, S+U, 0<|y|<1, ±11% syst.

The agreement between SPS/NA38+NA50+NA60 and RHIC/PHENIX is more than remarkable....... ...but difficult to understand!

Different \sqrt{s}
Different shadowing
Different nuclear absorption

\[\psi' \text{ in p-A and In-In collisions} \]

\[B_{1+0}(\psi', \rho'(D^+D^-)) \]

450, 400 and 200 GeV points rescaled to 158 GeV

Preliminary

\[L (\text{fm}) \]

0.1

1

10.1

450, 400 and 200 GeV points rescaled to 158 GeV

- NA50 p-A, 450 GeV Li
- NA50 p-A, 450 GeV HI
- NA50 p-A, 400 GeV HI
- NA50, S+U, 400 GeV
- NA38, S+U, 200 GeV
- NA50, Pb+Pb, 158 GeV
- NA50 p-A, 158 GeV
- NA60, p-A, 158 GeV
- NA60, In-In, 158 GeV

Preliminary!

The ψ' value measured by NA60 at 158 GeV is in good agreement with the normal absorption pattern, calculated from 450 (400) GeV data

Wait for new results in pA @ 158GeV (but statistics may be very low...)

\[\text{In-In collisions} \]

Study limited by statistics ($N_{\psi'} \sim 300$)
Normalized to Drell-Yan yields

- Most peripheral point does not show an anomalous suppression
- Good agreement with Pb-Pb

02004-p.29
Conclusions on \(J/\psi \)

\(J/\psi \) suppression is an interesting signature to search for QGP

It has been extensively studied at CERN SPS by NA38/NA50 and now NA60

Current interpretation of the SPS data:

- \(p-A \rightarrow \) only absorption in nuclear matter
- \(S-U \rightarrow \) only absorption by nuclear matter
- \(Pb-Pb \rightarrow \) anomalous suppression in central collisions
- \(In-In \rightarrow \) small effect

But the scenario is not yet clear...there are still points which have to be investigated...

- What is suppressed? Is the directly produced \(J/\psi \) or the \(J/\psi \) coming from the less bound \(\psi' \) and \(\chi_c \)?

- Why at SPS and RHIC a similar \(J/\psi \) suppression is observed?
The low mass region

The study of the low mass region allows the investigation of phenomena related to chiral symmetry restoration.

$M < 1 \text{GeV}$

thermal dilepton production is largely mediated by the ρ, ω, ϕ.

<table>
<thead>
<tr>
<th>Γ_{hot} [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho (770)$</td>
</tr>
<tr>
<td>150 (1.3 fm/c)</td>
</tr>
<tr>
<td>$\omega (782)$</td>
</tr>
<tr>
<td>8.6 (23 fm/c)</td>
</tr>
<tr>
<td>$\phi (1020)$</td>
</tr>
<tr>
<td>4.4 (44 fm/c)</td>
</tr>
</tbody>
</table>

ρ is particularly important because:

- ρ life time $<< \tau_{\text{collision}} (> 10 \text{ fm/c})$
- continuous “regeneration” by $\pi \pi$

$\pi \pi \rightarrow \rho^* \rightarrow \ell \ell$

...but...

- properties of ρ in hot and dense matter unknown (related to the mechanism of mass generation)
- properties of hot and dense medium unknown (general goal of studying nuclear collisions)
- coupled problem of two unknowns: need to learn on both

Differences wrt the J/ψ study

J/ψ

- Long life ($\Gamma = 93 \text{ keV}$)
- Decays outside of the “hot” region
- QGP modifies the production yields, but not its spectral function (mass, width)

ρ

- Short life ($\Gamma = 148 \text{ MeV}$)
- It may decay in $\mu^+\mu^-$ inside the “hot” region
- QGP modifies its spectral function
Chiral symmetry restoration

At $T=0$, quarks “dress” with gluons forming constituent q that make up hadrons
bare quark mass $m_q \sim 0 \rightarrow$ constituent quark mass $M_q \sim 300$ MeV

In a “hot” medium, dressing melts and $M_q \rightarrow 0$

For $m_q \sim 0 \rightarrow$ the QCD lagrangian is chirally symmetric
if $M_q \neq 0 \rightarrow$ spontaneous chiral symmetry breaking
if $M_q = 0 \rightarrow$ chiral symmetry restoration

Explicit connection between spectral properties of hadrons
(masses, widths) and the value of the chiral condensate $<qq>$?

ρ theoretical predictions

Brown-Rho scaling:
mesons mass is directly related to the quark condensate

$$\frac{m_{\rho}^*}{m_{\rho}} \approx \frac{\langle q\bar{q} \rangle^*}{\langle q\bar{q} \rangle}$$

Mass shift towards lower values, for increasing T

Rapp-Wambach broadening scenario

Medium modifications of the ρ are encoded in the vector
propagator computed in a many body approach. From
D_{ρ} we can extract information on mass and width.

$$D_\rho = \left[M^2 - m_{\rho}^{(0)^2} - \sum \rho_{\pi\pi} - \sum \rho_B - \sum \rho_{M} \right]^{-1}$$

ρ “melts” in hot and dense matter

- pole position roughly unchanged
- broadening mostly through baryon interactions
Previous SPS results

NA45/CERES: results on p-Be/Au, S-Au and Pb-Au

- first measurement of strong excess radiation above meson decays; \[\rightarrow \text{vacuum-} \rho \text{ excluded} \]
- \[\pi^+ \pi^- \text{ annihilation without } \rho \text{ modification} \]
- \[\rho \text{ Mass shift (Brown-Rho)} \]
- Increase of the \(\rho \) width (Rapp-Wambach)

statistical accuracy and resolution insufficient to unambiguously determine the in-medium spectral properties of the \(\rho \)

Difficult to distinguish among the different scenarios

NA60 invariant mass spectrum in In-In

How can we extract information on the in medium modification of the \(\rho \)?

Improving

- the statistics
- the mass resolution

As previously discussed, in order to get the signal, we have to subtract the background contributions:

- Combinatorial background
- Fake matches

Thanks to the very good mass resolution (20 MeV at the \(\omega \)) and to the high statistics, the \(\eta, \omega, \phi \) are clearly visible (for the first time in the dilepton channel in AA)

Two different approaches to understand the data:

- **Peripheral events:** description of the spectrum with a known hadronic cocktail
- **Central events:** isolation of the “excess” radiation by subtracting the known meson decay sources
Excess dimuons

Peripheral events
well described by meson decay cocktail:
- 2-body decays: ρ, ω, ϕ, η
- Dalitz decays: η, ω, η'
- open charm: DD

More central data
isolation of excess by subtraction of the measured decay cocktail (without ρ), based solely on local criteria for the major sources η, Dalitz, ω and ϕ

existence of excess dimuons

Study as a function of centrality

- Peripheral collisions: no cocktail ρ and no DD subtracted
- Clear excess above the cocktail ρ (bound to the ω with $\rho/\omega=1.0$)
- Excess centered at the nominal ρ pole rising with centrality
- Monotonic broadening with centrality
- Results integrated over p_T

EPJ Web of Conferences 02004-p.34
Comparison with theory

Data and predictions, after acceptance filtering, can be interpreted as the ρ spectral function, averaged over space-time and momenta

- Dropping ρ mass (BR) disfavoured
- Hadronic models predicting strong broadening/no mass shift (RW) in fair agreement with data

The mass region $M>1\text{GeV}$ is not properly described...

Predictions by Rapp (2003) for all scenarios

Theoretical yields normalized to data for $M<0.9\text{ GeV}$

What about $M>1\text{ GeV}$?

Renk/Ruppert, hep-ph/0702012

Mass region above 1 GeV described in terms of hadronic processes, $4\pi \cdots$

Mass region above 1 GeV described in terms of partonic processes, $qq\cdots$

How to distinguish?
Transverse momentum spectra (2)

Dilepton transverse momentum distributions reflect the following contributions:
- \(p_T \) - dependence of spectral function, weak
- \(T \) - dependence of thermal distribution of “mother” hadrons/partons
- \(M \) - dependent radial flow (\(v_T \)) of “mother” hadrons/partons

Note: final-state lepton pairs themselves only weakly coupled

Differences between hadrons and dileptons \(p_T \) spectra
- hadron \(p_T \) spectra determined at freeze-out \(T_f \)
- dilepton \(p_T \) spectra superposition from all fireball stages
 - early emission: high \(T \), low \(v_T \) (small flow)
 - late emission: low \(T \), high \(v_T \) (large flow)

Final spectra from space-time folding over \(T-v_T \) history from \(T_i \rightarrow T_f \)
(including low-flow partonic phase)

\(p_T \) distributions may give hints on the hadronic or partonic nature of the emitting source

Transverse momentum spectra

Transverse mass: \(m_T = (p_T^2 + M^2)^{1/2} \)

Strong mass dependence of \(m_T \) spectra

From the fit to the \(m_T \) spectra:

\[
\frac{1}{m_T} \frac{dN}{dm_T} \sim \exp\left(-\frac{m_T}{T_{eff}}\right)
\]

- \(M<1 \text{ GeV} \): monotonic flattening of the slopes\n \(\Rightarrow T_{eff} \) increases
- \(M>1 \text{ GeV} \): slope steepens again\n \(\Rightarrow \) small \(T_{eff} \)

Strong steepening at low \(m_T \), opposite to what expected from radial flow
Evolution of T_{eff} with mass

Strong rise of T_{eff} with dimuon mass, followed by a sudden drop for $M>1$ GeV

Rise consistent with radial flow of a hadronic source (here $\pi \pi \rightarrow \rho \rightarrow \mu \mu$), taking the freeze-out ρ as the reference

T_{eff} of $\rho > T_{\text{eff}}$ of dimuons

Drop signals sudden transition to low-flow source, i.e. source of partonic origin (here $qq \rightarrow \mu \mu$)

Combining M and p_t of dileptons seems to overcome hadron-parton duality

Conclusions on Low Masses

Thermal dilepton production dominated by $\pi^+\pi^- \rightarrow \rho \rightarrow \mu^+\mu^-$

is the major contribution to the lepton pair excess in heavy-ion collisions at SPS energies in the region $M<1$ GeV

In-medium ρ spectral function identified;

→ no significant mass shift of the intermediate ρ, only broadening;
→ connection to chiral restoration?

First observation of radial flow of thermal dileptons

→ mass dependence tool to identify the nature of the emitting source;
→ mostly partonic radiation for $M>1$ GeV?