“Fundamentals of Thermodynamic Modelling of Materials”

November 15-19, 2010
INSTN – CEA Saclay, France

PROFESSOR & TOPIC

Julian GALE
Curtin University, Australia

Simulation of the Thermodynamics of surfaces and interfaces

[04001]

Organized by
Bo SUNDMAN bo.sundman@cea.fr
Constantin MEIS constantin.meis@cea.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited.

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20111404001
Simulation of the Thermodynamics of Surfaces and Interfaces

Julian Gale
Dept. of Chemistry, Curtin University

Thermodynamics of the Solution Interface: Nucleation, Nanoparticles, Polymorphism and Morphology

Surface Simulation

- **Surface in vacuo**
 - Lattice dynamics is generally best
- **Solid-liquid interface**
 - Molecular dynamics is appropriate
- **Solid-solid interface**
 - Can be most challenging case

Equilibrium Morphology

- Compute the surface energy

\[
\Delta U_{SE} = \left(\frac{U_{\text{surface}} - U_{\text{bulk}}}{A} \right)
\]
Growth Morphology

- Quasi-kinetic
- Uses the attachment energy
 - U_{att} defined as the energy per molecule released when a new slice of depth d_{hkl} is attached to the crystal face.
 - Small attachment energy yields large faces

Surface Simulation Model

Two region strategy

OR

Slab
Surface Types

Type 1 Type 2a Type 2b

Morphology of Gibbsite: Al(OH)$_3$
Calculated Gibbsite Morphology

Size of (200) and (110) faces underestimated

Sodium Incorporation

Low levels of incorporation
High levels of incorporation (Na⁺ only)
(10-14) Surface of Calcite

Imaginary mode
at (1/2,0) in BZ

Surface Thermodynamics

• Morphology only probes relative surface energy
• Calcite basal plane:
 – Experimental:
 • $0.347 \pm 0.045 \text{ J/m}^2$ (Int. J. Rock Mech., 5, 253 (1968))
 • $1.4 \pm 0.4 \text{ J/m}^2$ (A. Navrotsky, Abstract GSA Meeting (2010))
 • $\Delta H \text{ immersion} = -0.535 \text{ J/m}^2$ (Coll. Surf. A, 80, 261 (1993))
 – Calculated:
 • 0.711 J/m^2 (Raiteri & Gale, 2010)
 • 0.261 J/m^2 (COSMIC Solvation, Gale & Rohl, 2007)
Grain Boundaries

Four region strategy: 2-1-1'-2'

General interfaces possible for mismatch < 5%

Barite (BaSO$_4$)
Surfaces of barite

The morphology of barite

Solvated surface energies:

(001) 241(18) mJm⁻²
(010) 193(15) mJm⁻²
(210) 194(15) mJm⁻²
A 100 ns in the life of a solvated (010) surface of barite

Reaction free energy for addition of barium to the surface

Clean surface
Sulphate

S. Piana et al, JACS, 128, 13568 (2006)
Influence of aspartic acid on barite

Acknowledgments

- Paolo Raiteri
- Andrew Rohl
- Stefano Piana

Australian Government
Australian Research Council

iVEC
"The hub of advanced computing in Western Australia"

National Computational Infrastructure