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Abstract. We extend the shell-model Monte Carlo applications to the rare-earth region
to include the odd-even nucleus 161Dy. The projection on an odd number of particles leads
to a sign problem at low temperatures making it impractical to extract the ground-state
energy in direct calculations. We use level counting data at low energies and neutron
resonance data to extract the shell model ground-state energy to good precision. We then
calculate the level density of 161Dy and find it in very good agreement with the level
density extracted from experimental data.

1 Introduction

The shell model Monte Carlo (SMMC) [1–4] is a powerful method for the calculation of statistical
properties of nuclei at finite temperature. This approach has proven to be particularly useful in the
calculation of nuclear level densities [5–9]. Reliable microscopic calculations of the level density often
require the inclusion of correlations beyond the mean-field approximation. In the SMMC approach
such correlations are treated in the context of the interacting shell model. SMMC calculations can be
carried out in model spaces that are many orders of magnitude larger than model spaces that can be
used in the conventional matrix diagonalization approach to the shell model.

Recently, the SMMC approach was extended to the rare-earth region and applied to a well-deformed
even-even nucleus 162Dy [10]. Here we extend the application of SMMC in rare-earth nuclei to include
the odd-even nucleus 161Dy. The projection on an odd number of particles leads to a sign problem (even
for good-sign interactions), making it impractical to calculate thermal observables at low temperatures.
Consequently, the ground-state energy of the nucleus cannot be extracted from direct SMMC calcula-
tions at very low temperatures. Here we use level counting data at low energies and neutron resonance
data to determine the ground-state energy. We then calculate the SMMC level density of 161Dy and
compare it with the level density extracted from available data.

2 Choice of Model Space and Interaction

We use the model space of Ref. [10], where the single-particle orbitals are 0g7/2, 1d5/2, 1d3/2, 2s1/2,
0h11/2 and 1 f7/2 for proton, and 0h11/2, 0h9/2, 1 f7/2, 1 f5/2, 2p3/2, 2p1/2, 0i13/2, and 1g9/2 for neutrons.
The single-particle energies are determined to coincide with the spherical Woods-Saxon plus spin-orbit
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potential in the spherical Hartree-Fock approximation. The effective interaction consists of monopole
pairing and multipole-multipole terms [10]

−
∑
ν=p,n

gνP†νPν −
∑
λ

χλ : (Oλ;p + Oλ;n) · (Oλ;p + Oλ;n) : , (1)

where the pair creation operator P†ν is given by P†ν =
∑

nl jm(−) j+m+la†α jm;νa
†
α j−m;ν and the multipole

operator Oλ;ν is given by Oλ;ν = 1√
2λ+1

∑
ab〈 ja|| dVWS

dr Yλ|| jb〉[a†α ja;ν × ãα jb;ν](λ) with ã jm = (−) j+ma j−m.
: : denotes normal ordering. The pairing strengths, gν = γḡν, where ḡp = 10.9/Z and ḡn = 10.9/N
are parametrized to reproduce the experimental odd-even mass differences for nearby spherical nu-
clei in the number-projected BCS approximation [10]. The quadrupole, octupole and hexadecupole
interaction terms have strengths given by χλ = kλχ for λ = 2, 3, 4 respectively. χ is determined self-
consistently [11] and kλ are renormalization factors accounting for core polarization effects. Here we
use the values for γ and kλ as in the study of 162Dy [10].

3 Ground-state Energy

Because of the sign problem introduced by the projection on an odd number of particles, the thermal
energy E(β) of 161Dy can in practice be calculated only up to β ∼ 5.5 MeV−1. The calculations for β >
2 MeV−1 were carried out using the recently implemented stabilization routines [10] to stabilize the
canonical propagator. Since the discretization of β introduces systematic errors in E(β), we calculated
the thermal energy at any given β for two values for the time slice (∆β = 1/32 MeV−1 and ∆β = 1/64
MeV−1) and then performed an extrapolation to ∆β = 0. For β ≤ 3 MeV−1, a linear extrapolation was
found to be suitable while for larger values of β, the dependence of E(β) on ∆β is weaker and we took
an average value.

To determine the ground-state energy E0, we fitted (by a one-parameter fit) the SMMC thermal
excitation energy E∗(T ) = E(T ) − E0 to the experimental thermal excitation energy. The latter is
calculated from E∗(β) = −∂ ln Z(β)/∂β, where Z is the experimental partition function (see below).
The experimental partition function and the thermal excitation energy are shown, respectively, by
solid lines in the top and bottom panels of Fig. 1. The solid circles are the SMMC results shown down
to a temperature of T ≈ 0.18 MeV, below which the statistical errors become too large because of the
sign problem (for comparison the lowest temperature calculated in the even-even nucleus 162Dy was
T = 0.05 MeV [10]).

At sufficiently low temperatures the experimental partition function can be calculated from Z(β) =∑
i(2Ji + 1)e−βEi where Ei are the experimentally known energy levels of the nucleus (measured with

respect to the ground-state energy). This partition function and the corresponding thermal excitation
energy are shown by the dashed lines in Fig. 1. However, since the level counting data is incomplete
above a certain excitation energy, the average experimental thermal energy becomes saturated at tem-
peratures above T ∼ 0.18 MeV (see the inset in the lower panel of Fig. 1). Since SMMC data exist only
above T ∼ 0.18 MeV, a realistic estimate of the experimental thermal energy at higher temperatures is
necessary to determine E0 from the fit. We accomplish this by using an experimental partition function
defined by

Z(T ) =
N∑
i

(2Ji + 1)e−Ei/T +

∫ ∞
EN

dEρBBF(E)e−E/T , (2)

where EN is an energy below which an essentially complete set of levels is known and ρBBF(E) =√
π

12 a−1/4(E − ∆)−5/4e2
√

a(E−∆) is an experimentally determined level density parametrized by the back-
shifted Bethe formula (BBF) [12]. The single-particle level density parameter a and the backshift ∆
are determined from level counting data at low energies and the s-wave neutron resonance data at the
neutron resonance energy. We find a = 18.564 MeV−1 and ∆ = −0.615 MeV. The solid lines in Fig. 1
are then calculated from Eq. (2). The number of the low-lying states N (determining EN) is chosen
such that the two curves (solid and dashed) for the experimental partition function merge smoothly at
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Fig. 1. Partition function Z (top panel) and thermal excitation energy E∗ (bottom panel) versus temperature T
for 161Dy. The SMMC results (solid circles) are compared with the results deduced from experimentally known
levels (dashed lines), and from Eq. (2) (solid lines). The ground-state energy E0 is obtained by a one-parameter
fit of the SMMC thermal energy to the experimental thermal energy (solid curve). Inset: thermal energy E versus
temperature for T < 0.4 MeV.

a sufficiently low temperature. We found that N = 8 is a reasonable choice. Fitting the solid curve in
the top panel of Fig. 1 to the SMMC thermal excitation energy (solid circles), we found a ground-state
energy of E0 = −363.920 ± 0.020 MeV. We emphasize that the SMMC partition function and thermal
energy fit very well the corresponding experimental quantities by adjusting only a single parameter
E0.

4 Level Density

The level density is the inverse Laplace transform of the partition function. Its average is determined in
the saddle-point approximation in terms of the canonical entropy and the heat capacity, which in turn
are calculated from the average thermal energy E(β) [5]. The SMMC level density is shown by the
solid circles in Fig. 2. We compare it with the experimentally determined BBF level density (dashed
line). The level counting data at low energies are shown by the histograms, and the neutron resonance
data is shown by the triangle at Ex = 6.454 MeV. We find that at low excitation energies and close to
the neutron resonance energy, the SMMC results agree quite well with the experimental level density.
At intermediate energies, the SMMC level density is slightly below the BBF level density.

5 Conclusions

We have extended the SMMC calculations in the rare-earth region to include the odd-even nucleus,
161Dy. The sign problem introduced by the projection on the odd number of particles makes it im-
practical to calculate directly the ground-state energy. We have circumvented this problem by using
the neutron resonance data and level counting data at low energies. We have then calculated the level

CNR*11

05002-p.3



EPJ Web of Conferences

0 2 4 6 8
E

x
 [MeV]

10
2

10
4

10
6

10
8

10
10

ρ(
E

x)

0 0.75 1.510
2

10
3

10
4

Fig. 2. Level density of 161Dy. The SMMC results (solid circles) are compared with experimental results. The
histograms are from level counting data, the triangle is the neutron resonance data and the dashed line is the
experimentally extracted BBF level density. Inset: level density for excitation energies Ex < 1.5 MeV.

.

density and find it to be in good agreement with the experimental level density extracted from avail-
able data. The method outlined here requires sufficient level counting data at low energies and neutron
resonance data.
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