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Abstract. In this pedagogical review, I provide comparative studies of the impurity scattering effects on the
two typical types of the unconventional superconductors: d-wave and ±s-wave superconductors. For the d-wave
superconductor, the main effect of impurity scattering is the formation of the zero energy resonant state by the
unitary scatters below Tc. Similarly, in the case of the ±s-wave superconductor, I show that impurity scattering
of the unitary limit also forms a resonant bound state, however, not a zero energy but an off-centered bound
state inside the superconducting (SC) gap, which modifies the density of states (DOS) of a fully opened gap to a
V-shaped one mimicking the pure d-wave DOS. On the contrary, in the d-wave case, the zero energy bound state
modifies the original V-shape DOS into a flat constant one near zero frequency. This contrasting behavior of the
impurity effect can be useful to distinguish the gap symmetry of the newly discovered Fe-based superconductors.
This contrasting behavior of two SC states with respect to the impurity scattering is demonstrated by numerical
calculations of the density of states (DOS), NMR 1/T1 rate and Knight shift K(T ).

1 Introduction

The impurity scattering is an important and useful tool to
study the superconducting (SC) gap symmetry because it
distinguishes the phase of the gap. For example, it is well
known that the conventional s-wave gap and the typical
nodal gap superconductors(Ss) such as d-wave and p-wave
can be easily distinguished by studying the impurity ef-
fects.

Especially the study of the impurity effects played a
crucial role to understand the SC properties of the high-Tc

cuprate superconductors (HTCSs) which is known to be a
d-wave superconductor (S). It is well known that the impu-
rity scattering in the d-wave S changes the power law de-
pendencies of the various low energy SC properties com-
pared to the pure d-wave state. For example, the temper-
ature dependence of the penetration depth λ(T ) changes
from the T -linear in the pure d-wave case to the T 2 behav-
ior with impurities, which is well confirmed with experi-
ments. Therefore it is very important to have a clear theo-
retical understanding of the impurity effects on the specific
SC state to confidently identify the correct gap symmetry
from the experimental data.

Recently, the Fe-based Ss have been discovered and
attracted a great interest[1,2]. The issue of the gap sym-
metry of this new class of Sc is currently yet settled and
hence the studies of impurity effects, both experimentally
and theoretically, is important to clarify this issue. Among
the candidate gap symmetries for the Fe-based S, the so-
called ±s-wave state (or sign-changing s-wave state) is the
most promising gap state[3–7]. As will be discussed in the
main text, the ±s-wave state is, loosely speaking, a kind
of hybrid of the d-wave gap and the s-wave gap, so that it
is expected that the impurity effects on this SC state also
show the interesting mixture behavior of the d-wave and
the s-wave cases.

a e-mail: ykbang@chonnam.ac.kr

In this review, we introduce the T -matrix formalism for
the impurity scattering in the SC state[8,9]. The T -matrix
approximation has been successfully applied to the various
unconventional superconductors such as heavy fermion [9]
and high-temperature superconductors [10]. For example,
it predicts a resonant bound state by unitary impurity scat-
terer inside the d-wave SC gap, which was crucial to ex-
plain the penetration depth of HTSC [10], 1/T1 experi-
ments of Pu-115 superconductor[11], etc. We first start with
the d-wave case and reproduce the known results for the
pedagogical purpose. Then we generalize the formalism to
the ±s-wave state of the minimal two band model[12] and
provide comparative calculations of the impurity effects on
several low energy SC properties to be compared to the d-
wave case.

The interesting effect of impurities in the SC state oc-
curs when the strong impurity scatterers form a impurity
resonance inside the SC gap below Tc. The key principle
of forming a resonance bound sate in the d-wave gap is that
the sign-changing d-wave SC order parameter(OP) guaran-
tees the absence of the renormalization of the anomalous
selfenergy due to impurity scattering. In the case of the ±s-
wave SC state, there are two s-wave OPs on two separate
bands and they have the opposite sign each other. There-
fore, we expect a similar mechanism as in the d-wave case
to work with the sign-changing ±s-wave superconductors.
However, there are important differences: (1) the cancel-
lation of the anomalous selfenergy would not be perfect
unless the sizes of +s and −s gap and their corresponding
DOSs Nh (hole band DOS) and Ne (electron band DOS)
are exactly equal; (2) the DOS of the pure ±s-wave SC
state is not linearly vanishing as in the d-wave case but a
fully gapped one. Considering these difference and simi-
larity, we need quantitative and transparent investigation
of the impurity effects on the ±s-wave state to distinguish
it from a nodal gap S such as a d-wave state.
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2 Formalism

In this paper, we use the T -matrix approximation for the
study of impurity scattering. The basic assumption of the
T -matrix approximation is that the total impurity density
nimp is very small. Then the interference among the dif-
ferent impurities can be ignored and the each impurity be-
haves as an independent scatterer. As a result, the multiple
scattering process from the single impurity can be easily
summed and the total impurity effect is obtained by simply
multiplying the single impurity result by nimp. For more de-
tailed discussion of the T -matrix formalism, we refer to the
Ref.[8,9]. In this paper, we consider only the non-magnetic
and local impurities. The single impurity Hamiltonian is
given by

Himp =
∑

k,k′
U0c†k,σck,σ (1)

where U0 is the strength of the impurity potential, and c†k,σ
and ck,σ are usual creation and annihilation operators of
electrons. Summing the infinite series of the multiple scat-
tering process from a single impurity potential, the full
Green function of the electron is written as

ĝ(ωn, k) = ĝ0(ωn, k) + ĝ0(ωn, k)T̂ (ωn)ĝ0(ωn, k) (2)

where the ”.̂..” symbol means the matrix form in the SC
state but it becomes a scalar quantity in the normal metallic
state, and ωn = πT (2n+1) is the Matsubara frequency. The
non-interaction Green function in the SC state is given as

ĝ0(ωn, k) = [iωnτ1 + ǫ(k)τ3 + ∆(k)τ1]−1. (3)

where τi is the Pauli matrix in the particle-hole space and
we drop the spin indices because we consider only the spin
singlet superconductors in this paper. For the local (or delta
function) potential, the T -matrix becomes k-independent
and given as

T̂ (ω) = Û0 · [1 − Û0

∑

k

ĝ0(ω, k)]−1. (4)

with the matrix form of the impurity potential Û0 = U0τ3.
As can be seen in the above equation, in the T -matrix for-
malism, ĝ0(ω, k) always comes with the total momentum
summation as

∑

k ĝ0(ω, k). Therefore it is convenient to de-
fine the following momentum integrated Green functions
for each Pauli component

G0
0(ω) =

1
πN0

∑

k

g0
0(ω, k) =

〈

ωn
√

ω2
n + ∆

2(k)

〉

, (5)

G1
0(ω) =

1
πN0

∑

k

g1
0(ω, k) =

〈

∆(k)
√

ω2
n + ∆

2(k)

〉

, (6)

G3
0(ω) =

1
πN0

∑

k

g3
0(ω, k) = 0. (7)

(8)

Above we integrated over the momentum k only for the
component perpendicular to the Fermi surface (FS) and
the component parallel to the FS remained. The symbol
”〈...〉” means the FS angle average. From this, it is clear
that the second equation for G1

0(ω) should vanish for the d-
wave S. The last equation for G3

0(ω) is identically zero with

the particle-hole symmetry assumption which is practically
satisfied for all metallic system.

Now using Eq.(4), we can calculate the T -matrices and
the previous discussion of the particle-hole symmetry al-
low us to take T 3 = 0 in general and we need to calculate
T 0,1 components only. Instead of using the impurity po-
tential strength U0, it is more convenient to introduce the
phase shift parameter c defined as πN0U0 = c−1 = tan δ0
related to the s-wave phase shift δ0; with c=0 in the uni-
tary limit and c > 1 in the Born limit scattering. To this
end, T 0,1 are solved as

T i(ωn) =
Gi(ωn)

D
(i = 0, 1), (9)

D = c2 + [G0]2 + [G1]2, (10)

G0(ωn) =

〈

ω̃n
√

ω̃2
n + ∆̃

2(k)

〉

, (11)

G1(ωn) =

〈

∆̃
√

ω̃2
n + ∆̃

2(k)
,

〉

(12)

Finally, the impurity induced selfenergy correction is given
as Σ i(ωn) = ΓT i(ωn) with the impurity concentration pa-
rameter Γ = nimp/(πN0) and in turn these selfenergies renor-
malize the Green functions as ω̃n = ωn+Σ

0 and ∆̃ = ∆+Σ1,
respectively.

2.1 d-wave state

The d-wave state has the property that the FS angle average
of the OP, < ∆(k) > becomes zero. Therefore, the T 1 com-
ponent is identically zero and the T 0 component is given
by

T 0(ωn) =
G0(ωn)

c2 + [G0]2
. (13)

Now the physical quantities should be calculated by the
analytic continuation of iωn → ω+ iδ. This can be done by
two methods: (1) direct numerical substitution of iωn →
ω + iδ; (2) Pade-approximant method [13]. Either method
works well. The retarded form of selfenergy is Σ0(ω) =
ΓT 0(ω) and the various physical quantities are calculated
with the renormalized retarded Green function given as

ĝ(ω, k) = [ω̃τ1 − ǫ(k)τ3 − ∆(k)τ1]−1. (14)

with ω̃ = ω + Σ0(ω).
For example, assuming the FS angle dependent d-wave

OP ∆(φ), the DOS is given as

N(ω) =

〈

Re
ω̃

√

ω̃2 − ∆2(φ)

〉

φ

. (15)

And we can calculate the nuclear spin-lattice relaxation
rate 1/T1 following the standard formula

1
T1T

∼ −
∫ ∞

0
dω
∂ fFD(ω)
∂ω

















〈

Re
ω̃

√

ω̃2 − ∆2(φ)

〉2

φ

+

〈

Re
∆(φ)

√

ω̃2 − ∆2(φ)

〉2

φ

















, (16)
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Fig. 1. (Color online) The d-wave OPs |∆(φ)| with different nodal
slopes. From Ref.[14].

and the superconducting spin susceptibility χS

χS ∼ −
∫ ∞

0
dω
∂ fFD(ω)
∂ω

〈

Re
ω̃

√

ω̃2 − ∆2(φ)

〉

φ

, (17)

where fFD(ω) is the Fermi-Dirac function and 〈...〉φ means
the angular average over the FS. The first term in the bracket
of Eq. (16) is N2(ω). The second term vanishes in our cal-
culations because of the symmetry of the OP. To calcu-
late 1/T1T using Eq. (16), or χS using Eq. (17), we need
the full temperature dependent gap function ∆(φ, T ) and
Tc and we use the phenomenological formula ∆(φ, T ) =
∆(φ, T = 0) Ξ(T ) with Ξ(T ) = tanh(β

√
Tc/T − 1) with

parameters β and ∆0/Tc. In our numerical calculations we
chose β = 1.74, and the final results are not sensitive to this
parameter, while the ratio ∆0/kBTc is an important param-
eter to simulate strong-coupling effects; ∆0/kBTc = 2.14
for the standard weak-coupling d-wave SC and the strong-
coupling effects will increase this ratio. The temperature
dependence of Σ0(ω, T ) ≡ ΓT 0(ω, T ) is similarly extrapo-
lated: T 0(ω, T ) = T 0(ω, T = 0) Ξ(T ) + Tnormal(1 − Ξ(T )),
where Tnormal = Γ/(c2 + 1) is the normal state T 0.

Now we show the numerical calculations for the im-
purity effects on the d-wave SC state. Figure 1 shows the
d-wave OP |∆(φ)| with different slopes around the nodal
point.[14] The one with the slope near 45 degree is the
standard harmonic d-wave OP and the ones with a very flat
slope can be realized in the cuprate or heavy fermion d-
wave Ss with a critical AFM correlation (ξAFM ≫ 1). In
Fig.2 we shows the imaginary part of self-energy ImΣ0(ω)
for different d-wave OP ∆(φ) shown in Fig.1. Fig.2(a) shows
the Born limit impurity case with Γ = 0.025. We see that
the flatter the nodal region of |∆(φ)| is, the value of γ =
ImΣ0(ω = 0) increases. Fig.2(b) shows the unitary limit
impurity case with Γ = 0.0025. We see the opposite trend
compared to the Born scatter. Namely, the flatter the nodal
region of |∆(φ)| is, the value of γ = ImΣ0(ω = 0) decreases.

In Fig.3, we show the normalized DOS N(ω)/N0 cal-
culated with the results of selfenergy in Fig.2. While the
impurity induced selfenergy in Fig.2 showed an opposite
behavior for the Born and unitary scatters, N(ω = 0)/N0
displays the same trend with respect to the shape of the
OP |∆(φ)|. Namely, for both the Born and unitary scat-
ters, the flatter the nodal region of |∆(φ)| is, the value of
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Fig. 2. (Color online) (a) The imaginary part of self-energy
ImΣ0(ω) for different d-wave OP |∆(φ)| shown in Fig.1 with Born
limit scatterer (c = 1 and Γ = 0.025). The flatter the nodal region
of |∆(φ)| is, the value of γ = ImΣ0(ω = 0) increases; (b) the same
as (a) with the unitary scatterer (c = 0 and Γ = 0.0025). The
flatter the nodal region of |∆(φ)| is, the value of γ = ImΣ0(ω = 0)
decreases. From Ref.[14].
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Fig. 3. (Color online) (a) The normalized DOS N(ω)/N0 for dif-
ferent d-wave OP |∆(φ)| shown in Fig.1 with Born limit scatterer
(c = 1 and Γ = 0.025). The flatter the nodal region of |∆(φ)| is, the
value of N(ω = 0)/N0 increases.(b) the same as (a) with the uni-
tary scatterer (c = 0 and Γ = 0.0025). The flatter the nodal region
of |∆(φ)| is, the value of N(ω)/N0 increases. From Ref.[14].

N(ω)/N0 increases. However, for the standard harmonic d-
wave (with 45 degree of slope) case, the shape DOS near
zero frequency shows the different behaviors for the Born
and unitary impurities, respectively; the DOS remains V-
shape with the Born scatterer but the DOS become flat near
zero frequency with the unitary scatterer.

Figure 4 shows the calculations of Knight shift χS (T )
of a standard harmonic d-wave S normalized by its normal
state value χN with the gap values 2∆0 = 5 kBTc (lines) and
8 kBTc (symbols), for pure case and unitary impurity scat-
tering of Γ/∆0 = 0.032, respectively. As seen in the DOS
of the harmonic d-wave case with the unitary scatterer in
Fig.3(b), the unitary impurity scattering also makes the low
temperature part of χS (T ) flat.
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Fig. 4. (Color online) The calculated spin susceptibility χS of a
standard harmonic d-wave S normalized by its normal state value
χN for gap values 2∆0 = 5 kBTc (lines) and 8 kBTc (symbols), and
impurity scattering rates Γ/∆0 = 0 and 0.032, respectively. From
Ref.[15].

Figure 5 shows the calculations of the normalized NMR
spin lattice relaxation rate 1/T1 for a standard harmonic d-
wave gap for unitary scatterer (c = 0) with different im-
purity scattering rates Γ/∆0 = 0.0, 0.016, 0.032, 0.064, re-
spectively. The pure d-wave case shows the well known
T 3 behavior and increasing the impurity concentration nimp

(equally increasing Γ values), the zero energy impurity res-
onance density increases as shown in the inset of Fig.5. As
a result, 1/T1 displays the T -linear part at low temperatures
for the increasingly wider region with increasing Γ.

2.2 ±s-wave state

In the minimal two band model of the ±s-wave state [6],
there exist two separate bands, hole band and electron band
with the DOSs Nh and Ne, respectively. Each band devel-
ops an isotropic s-wave OPs, ∆h and ∆e, with the opposite
sign each other. The impurity effects on this model also can
be calculated by the T -matrix formalism but it need to be
generalized for the two bands [12] as follows.

T i
a(ωn) =

Gi
a(ωn)
D

(i = 0, 1; a = h, e), (18)

D = c2 + [G0
h +G0

e]2 + [G1
h +G1

e]2, (19)

G0
a(ωn) =

Na

Ntot

〈

ω̃n
√

ω̃2
n + ∆̃

2
a(k)

〉

, (20)

G1
a(ωn) =

Na

Ntot

〈

∆̃a
√

ω̃2
n + ∆̃

2
a(k)
,

〉

(21)

where ω̃n = ωn + Σ
0
h (ωn) + Σ0

e (ωn) and ∆̃h,e = ∆h,e +

Σ1
h (ωn) + Σ1

e (ωn), and the impurity induced selfenergies
are calculated with T -matrices as Σ0,1

h,e (ωn) = Γ · T 0,1
h,e (ωn);

Γ = nimp/πNtot where nimp is the impurity concentration
and Ntot = Nh + Ne is the total DOS.

Note Eq.(19), which is the denominator of T -matrices.
The last term of it, [G1

h + G1
e], would exactly vanish for a
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Fig. 5. (Color online) The normalized 1/T1 for a standard har-
monic d-wave gap for unitary scatterer (c = 0) with impurity
scattering rates Γ/∆0 = 0.064, 0.032, 0.016, 0.0. The green dia-
monds are the normalized 1.6 GPa experimental data and the ma-
genta diamonds are for 2.1 GPa data of CeRhIn5 [16,17]. Solid
lines for T 3 and T are guides for the eyes. Inset: The correspond-
ing normalized DOS N(ω)/N0, in decreasing order of N(ω = 0),
with Γ/∆0 = 0.064, 0.032, 0.016, 0.0. From Ref.[18].

d-wave and that is the technical reason for the formation
of the resonance bound state at zero energy when c = 0,
the unitary limit scattering. For the ±s-wave case, G1

h and
G1

e have opposite signs, therefore a large cancellation in
[G1

h +G1
e] occurs but never be perfect unless ∆e = −∆h and

Nh = Ne. With an incomplete cancellation, the finite rem-
nant acts as weakening the scattering strength c (it means
increasing the effective value of c). For the middle term
[G0

h + G0
e], G0

h and G0
e are always the same sign, so that

the normal scattering process is additive with number of
bands.

With the typical band structure of the Fe-based pnic-
tides[19], Nh(0) and Ne(0) are not equal. Then we showed
that the inverse relation between two ratios Nh(0)/Ne(0)
and |∆h|/|∆e|.[6] This inverse relation between the gap sizes
and the DOS sizes – i.e, |∆h| < |∆e| for Nh(0) > Ne(0) and
vice versa – is a generic property of the interband pairing
model [6]. In this review, we showed the numerical results
with the choice of |∆e|/|∆h| ≈ 2.5 and Nh(0)/Ne(0) ≈ 2.6.

The NMR nuclear spin-lattice relaxation rate 1/T1 of
the ±s-wave state is calculated by

1
T1
∝ −T

∫ ∞

0
dω
∂ fFD(ω)
∂ω















∑

a=h,e

N2
a (0)















〈

Re
ω̃

√

ω̃2 − ∆̃2
a(k)

〉2

k

+

〈

Re
∆̃a(k)

√

ω̃2 − ∆̃2
a(k)

〉2

k















+ 2Nh(0)Ne(0)














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Fig. 6. (Color online) (a) Normalized DOS Ntot(ω) of the
±s-wave S for different impurity concentrations, Γ/∆e =

0.0, 0.01, 0.04, 0.08. Thin dotted line is of the pure state for com-
parison and other lines are offset for clarity (the zero baselines of
the offset are marked by the narrow horizontal bars of the corre-
sponding colors). (b) Impurity induced selfenergies ImΣ0

tot(ω) =
ImΣ0

h + ImΣ0
e with the same parameters as in (a). These curves

are not offset. From Ref.[12].

〈

Re
ω̃

√

ω̃2 − ∆̃2
h(k)

〉

k

〈

Re
ω̃

√

ω̃2 − ∆̃2
e(k′)

〉

k′

+

〈

Re
∆̃h(k)

√

ω̃2 − ∆̃2
h(k)

〉

k

〈

Re
∆̃e(k

′
)

√

ω̃2 − ∆̃2
e(k′)

〉

k′





























. (22)

The above formula of 1/T1 contains three scattering
channels: two intraband scattering channels from the hole
band and electron band, respectively, and one interband
scattering channel between the hole and electron bands.
The unique feature of the ±s-wave state is the interband
scattering channel. Having the opposite signs for ∆h and
∆e, this term (the last term in Eq.(22)) substantially cuts
out the relaxation rate below Tc, reducing the so-called
Hebel-Schlichter peak. However, we emphasized that this
interband term is not sufficient enough to completely wash
out the Hebel-Schlichter peak, in particular, when the other
two intraband scattering processes are correctly included
[6]. Our results shows that the impurity scattering is nec-
essary to completely kill the Hebel-Schlichter peak. For
the temperature dependence of the gaps ∆h,e(k,T ), we use a
phenomenological formula, ∆h,e(k,T ) = ∆h,e(k) tanh(β

√
Tc/T − 1)

as in the d-wave case.
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Fig. 7. (Color online) Calculated 1/T1(T ) of the ±s-wave S for
different impurity concentrations, Γ/∆e = 0.0, 0.01, 0.04, 0.08
and with 2∆h/Tc=3.0. Experimental data is from Ref.[22]. The
curves are offset for clarity. From Ref.[12].

Fig.6 (a) shows the total DOS of two bands with differ-
ent impurity concentrations Γ/∆e = 0.0, 0.01, 0.04, 0.08 of
the unitary scatterer (c=0), and Fig.6(b) shows the corre-
sponding impurity induced selfenergy ImΣ0

tot(ω) = ImΣ0
h +

ImΣ0
e . Fig.6 (a) shows how the fully opened gap of the pure

state is filled with impurity states; the pattern of filling is
very unusual and the Γ/∆e = 0.04 case displays a perfect
V-shape DOS down to zero energy mimicking the pure d-
wave SC gap. The origin of this behavior is easily seen in
Fig.6(b); the impurity bound state is never formed at zero
energy but away from it (even in the unitary limit) because
of the incomplete cancellation of [G1

h +G1
e], so the full gap

around ω = 0 is protected until this off-centered impu-
rity band spills over to the zero energy with increasing the
impurity concentration. When it touches the zero energy,
the superconductor behaves gapless as in a pure d-wave
superconductor, and this happens with the critical impurity
concentration Γcrit (= 0.04∆e in our specific model calcula-
tions). Increasing the impurity concentration beyond Γcrit,
the DOS still keeps the V-shape but now Ntot(ω = 0) ob-
tains a finite value (see the blue curve of Γ = 0.08∆e case
in Fig.6(a)).

This manner of evolution of the DOS with the impurity
concentration results in the following consequences: (1)
Beyond the critical impurity concentrations, direct mea-
surements of the DOS at low temperature such as photoe-
mission and tunnelling spectroscopy would see a V-shape
DOS, but at the same time ARPES would be measuring an
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isotropic gap [20,21]; (2) Temperature dependence mea-
surement such as 1/T1(T ) would see three different types
of behavior. First, when Γ = Γcrit (Γ = 0.04∆e case in
Fig.6(a)), the system sees the linear in ω DOS for whole
temperature region of 0 < T < Tc. Second, when Γ > Γcrit

(Γ = 0.08∆e case in Fig.6(a)), the linear inωDOS will pre-
vail in the high temperature region, but at low temperatures
the finite DOS of Ntot(ω = 0) makes the system a gap-
less superconductor. Finally, when Γ < Γcrit (Γ = 0.01∆e

case in Fig.6(a)), the system always behaves as a fully
opened gap superconductor although the gap is weakened
by impurities. This variation of DOS with the impurity
concentration will be reflected in the behavior of 1/T1(T )
as shown in Fig.7.

Figure 7 shows the calculations of 1/T1(T ) with the
variation of the impurity concentration using the same pa-
rameters as in Fig.6. It is clear that the puzzling T 3 be-
havior of 1/T1 can be understood with the ±s-wave; it has
the same origin as in the d-wave gap, i.e., the linearly ris-
ing DOS. With Γ = Γcrit = 0.04∆e, the T 3 behavior ex-
tends to the lowest possible temperatures as expected. With
Γ > Γcrit, the T 3 behavior occurs only at high temperatures
and at lower temperatures the system probes the finite DOS
of Ntot(ω = 0), hence displaying the T -linear behavior of
1/T1. With Γ < Γcrit, the system should display a full gap
behavior below Tc, but somewhat weakened by impurities.
As a consequence, 1/T1 shows, in this case, a much weak-
ened exponential drop for the extended temperature region
below Tc. This wide range of variation occurs with the im-
purity concentration 0 < Γ/∆e < 0.08 and the reduction
of Tc due to impurities is less than 10%; δTc/T 0

c is propor-
tional to (Γ/∆e)/[c2 + 1].

3 Conclusion

In this review, I provided a pedagogical introduction of the
T -matrix formalism to study the impurity effects on the
SC state. We then studied the impurity scattering effects
on two typical unconventional Ss: the d-wave and ±s-wave
state. In both cases, the strong limit impurity scatter (uni-
tary scatterer) forms an impurity resonance inside the SC
gap and it significantly changes the low energy properties
of both SC states. However, there is also important dif-
ference between two cases; the d-wave state has the zero
energy resonance but the ±s-wave state has an off-centered
resonance, respectively. We showed the numerical calcu-
lations of the impurity induced selfenergy, the modified
DOS, Knight shift, and NMR 1/T1 relaxation rates for both
SC states for the comparative studies. I hope that the read-
ers obtain a good guideline to read the experimental data to
distinguish the different unconventional superconductors.
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