Vertical distributions of 226Ra, 228Ra, and 137Cs activities in the southwestern part of the Sea of Okhotsk

M. Inoue1, K. Yoshida1, M. Minakawa2, H. Kofuji3, S. Nagao1, Y. Hamajima1 and M. Yamamoto1

1 Institute of Nature and Environmental Technology
Kanazawa University, Japan
2 Fisheries Research Agency, National Research Institute of Fisheries Science, Japan
3 Japan Marine Science Foundation - Aomori, Japan

Abstract

We collected 14 water column seawater samples in the southwestern part of the Sea of Okhotsk and employed low-background γ-spectrometry with convenient minimal radiochemical processing to determine the activities of 226Ra (half-life $t_{1/2} = 1600$ y), 228Ra (5.75 y), and 137Cs (30.2 y) of the samples. All of these nuclides exhibited unique vertical profiles; 226Ra, 228Ra, and 137Cs activities exhibit small variations from 50–500 m depth (226Ra, \sim 2 mBq l$^{-1}$; 228Ra, \sim 0.4 mBq l$^{-1}$; 137Cs, \sim 1 mBq l$^{-1}$). These profiles can be explained by convective mixing of surface water to this layer.

1. Introduction

The Sea of Okhotsk, one of the largest marginal seas of the northwestern North Pacific, is composed of various distinct layers, such as dense shelf water (DSW) and Okhotsk Sea Intermediate water (OSIW), because of unique...
vertical water circulation (Shcherbina et al., 2004). In the southwestern Sea of Okhotsk, circulation of water masses is markedly complicated and variable. In winter, the convective mixing of surface water is believed to form an intermediate layer (Kitani, 1973). However, contrary to recent studies of surface water migration, the vertical circulation characteristics have not yet been well determined. Various radionuclides in seawater have been used as tracers for studying geochemical cycles in marine environments (Cochran and Masqué, 2004). In particular, activities of ^{226}Ra, ^{228}Ra, and ^{137}Cs are good tracers of water mass transport. However, the standard γ-spectrometry technique for measuring these radionuclides usually requires very large volumes (hundreds to tens of thousands of liters) of deep seawater because of the radionuclides’ low activities. Therefore, existing data on the distributions of these nuclides in the Sea of Okhotsk are not sufficient (Kawakami and Kusakabe, 2008), particularly beneath the surface, to allow us to investigate the details of water circulation. Low-background γ-spectrometry combined with minimal radiochemical processing (Nakano et al., 2008) enabled the determination of low levels of ^{226}Ra, ^{228}Ra, and ^{137}Cs, using only 60 L water samples from the Sea of Okhotsk, providing enough data for this purpose. In this study, we applied this method to conduct a preliminary investigation of vertical profiles of these nuclides in the southwestern part of the Sea of Okhotsk, so we could elucidate the flow patterns of water masses in this area.

2. Samples and experimental methods

We collected 14 seawater samples (~ 60 L) at depths of 5, 10, 50, 100, 150, 200, 250, 500, 750, 1000, 1250, 1500, 1650, and 1800 m on the southwestern slope of the Kuril Basin in the Sea of Okhotsk (site SY09C; N45°01′, E145°01′; 1850 m depth). Sampling was conducted during the Soyo Maru expedition (Jul-Aug 2009), and all water samples were unfiltered. Detailed explanations of experimental procedures are presented elsewhere (Nakano et al., 2008). Briefly, after adjustment to pH 1, ^{137}Cs was quantitatively separated by coprecipitation with ammonium phosphomolybdate (AMP). After removal of AMP, the least Ra-contaminated Ba carrier was added and barium sulfate was precipitated with radium isotopes. Then, an Fe carrier was added, and Fe(OH)$_3$ was precipitated by adjusting the sample pH to ~ 7–8. The chemical yield of ^{137}Cs was 95% (the mean value for our laboratory), based on the ratio of stable Cs in untreated and treated water samples. The yield of radium isotopes (83–100%) was determined from
the yield of BaSO₄. Low-background γ-spectrometry of AMP and BaSO₄-Fe(OH)₃ mixture samples was performed using Ge-detectors, most of which are located at the Ogoya Underground Laboratory, Japan (Hamajima and Komura, 2004). γ-Peaks of 228Ra (338 and 911 keV of 228Ac) are ambiguous in deep waters (below 1000 m depth), indicating that levels were below our detection limit for water samples ($<0.1 \text{mBq l}^{-1}$ for 60 L water).

3. Results and discussion

The vertical profiles of activities of nuclides studied are presented in fig. 1 together with salinity, temperature, and density. The water column in this area is considered to consist of intermediate cold water (ICW) (potential temperature of $−1.8−2^\circ\text{C}$, salinity of 32.8–33.4) (50–300 m), transient layer water (TLW) (1–25°C, 33.4–34.3) (300–1200 m), and deep layer water (below ~1200 m to bottom) beneath the surface water (above ~50 m) (Takizawa, 1982; Oguma et al., 2008). The variation of 226Ra activity in surface and ICW is small ($\sim2 \text{mBq l}^{-1}$) (fig. 1c). In the transient and deep layers, 228Ra activity gradually increases from 2–5 mBq l$^{-1}$, showing a higher value than that of the deep water at the same depth in the northwestern North Pacific ($KH71-3N$: 2–4 mBq l$^{-1}$; Tsunogai and Harada, 1980). These features are considered to reflect the reserve of 226Ra that is continuously supplied from bottom sediment (and settling particles) because of its long life and/or the long residence time of deep layer water (Cochran, 1980). Differing steep gradients of 228Ra activity typically observed in other oceans (vertical eddy coefficients of 0.5–7 cm2s$^{-1}$; surface to < 300 m depth; Kaufman et al., 1973; Moore, 1972; Li et al., 1980; Tanaka et al., 2006), 228Ra activity in the ICW exhibits small variation ($\sim 0.4 \text{mBq l}^{-1}$) after the decrease from the surface ($\sim 0.6 \text{mBq l}^{-1}$) (fig. 1d). 228Ra activity steeply decreases in TLW and is markedly low in the deep layer water ($<0.1 \text{mBq l}^{-1}$). The profile of 226Ra/228Ra ratio mainly results from large variation in the activity of short-lived 228Ra, exhibiting a constant value (0.15) in ICW (fig. 1c). Differing the gradients from surface or subsurface in other oceans (Ito et al., 2003; Povinec et al., 2003), the activity of fallout 137Cs in the SY09C waters exhibits small variation in ICW ($\sim 1 \text{mBq l}^{-1}$), remaining similar to the surface level, and it continues to decrease in TLW and the deep layer water (0.5 to 0.1 mBq l$^{-1}$) (fig. 1f). The inventory of 137Cs shows marked variation in each ocean, reflecting water migration after the initial supply of 137Cs from atmospheric nuclear test explosions in the middle of the 1950’s and early 1960’s, the Chernobyl reactor accident and later temporal changes
Figure 1: Vertical profiles of a) salinity and potential temperature, b) density, c) 226Ra and d) 228Ra activities, e) 228Ra/226Ra ratio, and f) 137Cs activity of the SY09C water samples.

(Aoyama and Hirose, 2003). The inventory of 137Cs (0–2000 m depth) in the Sea of Japan (> 40°N, 3.0 kBq m$^{-2}$; < 40°N, 2.5 kBq m$^{-2}$) is higher than that of the northwest Pacific (40–60°N) (1.6 kBq m$^{-2}$) (decay-corrected to 2001), reflecting the winter convection of surface water (Ito et al., 2003; Aoyama and Hirose, 2003). 137Cs activity of the SY09C waters is lower than that of waters from the Japan Basin in the Sea of Japan (the site SY09B; N43°00′, E138°00′; 3700 m depth; our unpublished data from water samples collected during 2009 Soyo Maru expedition) at all depths (particularly below ~ 500 m depth) and, therefore, the estimated inventory of SY09C waters (0.7 kBq m$^{-2}$; 0–1850 m depth) is approximately 1/3 times that of the SY09B waters (2 kBq m$^{-2}$; 0–2000 m). The low 137Cs inventory at the site...
SY09C indicates that the movements of the Soya Warm Current Water from the Sea of Japan (Itoh and Ohshima, 2000) do not contribute to effective accumulation of 137Cs in the southwestern Sea of Okhotsk. In the northwestern Okhotsk, rapid sea-ice formation leads to production of DSW (26.9σ_θ maximum density), which directly joins to OSIW (26.8–27.4σ_θ; 250–1000 m depth) in the off-shore area. Also, the vertical distribution of artificially produced chlorofluorocarbons (CFCs) indicates the downward delivery of CFCs from the surface to intermediate layer during this process (Yamamoto-Kawai et al., 2004; Shcherbina et al., 2004). ICW at site SY09C (26.5–26.8σ_θ; fig. 1b) is considered to be formed by a similar mechanism (i.e., convection of surface water that reflects cold winter temperatures): Nuclide features observed in ICW are plausibly explained by downward delivery of 228Ra and 137Cs from the surface accompanying the convective mixing of surface water, which starts to migrate from the northwest Okhotsk to this area, before/during the homogenization by vertical mixing, though the convection areas of surface water are not clarified. Activities of all nuclides in the water sample from 500 m depth remain at similar levels as those of ICW, suggesting that the convection of surface water affects the upper part of TLW. On the other hand, at \sim 500–1000 m depth, the vertical profiles of these nuclides change markedly (e.g., steep decreases of 228Ra and 137Cs activities), reflecting the presence of boundary layers of these water masses and little vertical mixing below \sim 500 m depth. Further clarification of the origin, convection area, and migration pattern of ICW will be facilitated by fine-resolution spatial measurements of these nuclides within the Sea of Okhotsk.

Acknowledgements

We thank the researchers, captain, and crew of the R/V Soyo Maru for their assistance during sampling. This study was supported partly by a Grant-in-Aid for Scientific Research No. 21510011 (M. Inoue) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

