Evolution of uranium dislocation structure at different-rate deformation and different-temperature annealing

A.E. Shestakov and I.V. Artamonov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physuics, Snezhinsk, Russia

Abstract. The Williamson-Hall method based on analyzing the angular dependence of diffraction maximum broadening is used to study the dislocation structure. Densities of chaotically arranged dislocations on samples after their different-rate deformation are measured. Consideration is given to the dislocation structure of a spherical uranium sample after its shock-wave loading, as well as to the dislocation structure of model samples deformed at the rate of $\sim 10^{-3} \text{s}^{-1}$ up to 5%, 20%, and 60% relative deformation. After deformation, samples were vacuum annealed at 200C, 400C, 600C, 720C, and 850C (in alpha-, beta-, and gamma-phases). Samples were cooled at the rate of $\sim 10^\circ/\text{min}$. Results for samples subjected to different-rate deformation and different-temperature annealing are compared. In the dislocation structure of the sample recovered after shock-wave loading, special features that cannot be described with the help of mechanisms observed at the low-rate deformation and cooling were elucidated. Systematic investigations of the uranium dislocation structure at the increasing speed of loading are to be continued.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.