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Effect of casing yield stress on bomb blast impulse
M.D. Hutchinson
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Abstract. An equation to predict blast effects from cased charges was first proposed by U. Fano in 1944 and revised by E.M.
Fisher in 1953 [1]. Fisher’s revision provides much better matches to available blast impulse data, but still requires empirical
parameter adjustments. A new derivation [2], based on the work of R.W. Gurney [3] and G.I. Taylor [4], has resulted in an
equation which nearly matches experimental data. This new analytical model is also capable of being extended, through the
incorporation of additional physics, such as the effects of early case fracture, finite casing thickness, casing metal strain energy
dissipation, explosive gas escape through casing fractures and the comparative dynamics of blast wave and metal fragment
impacts. This paper will focus on the choice of relevant case fracture strain criterion, as it will be shown that this allows the
explicit inclusion of the dynamic properties of the explosive and casing metal. It will include a review and critique of the most
significant earlier work on this topic, contained in a paper by Hoggatt and Recht [5]. Using this extended analytical model, good
matches can readily be made to available free-field blast impulse data, without any empirical adjustments being needed. Further
work will be required to apply this model to aluminised and other highly oxygen-deficient explosives.

1 Blast impulse equations

The equation derived in [2] for the blast impulse I from a
cased charge as a fraction of the impulse I0 from the same
charge without a casing is:

I
I0
=

√
C

C + 2M
(1)

This equation applies where the casing metal is very duc-
tile and therefore expands to a radius at which the internal
driving pressure of the explosive gases is negligible. It
also applies only to explosive compositions that are neither
aluminised nor otherwise highly oxygen deficient, since
these generate additional blast energy through exothermic
reactions with the surrounding air (i.e. after-burn).

However, many real bomb casings are made from
metals with significant yield strength and these will frac-
ture at expansion radii where internal driving pressure of
the explosive gases is significant and the simple energy
balance between gases and casing fragments predicted by
Gurney [3] has not been reached.

2 Casing fracture criteria

It has been pointed out by G.I. Taylor [4] that the internal
driving pressure exerted upon the casing metal by the
gaseous products, while it eventually strains the casing
metal towards fracture, initially suppresses fracture. The
casing material is initially compressed between the gas
pressure acting on its inside surface and its own inertia.
The casing metal shears in compression, both losing thick-
ness and gaining diameter and surface area in the process.

Taylor also pointed out that the compressive stress
in the casing falls in value from the instantaneous gas
pressure at its inside surface, as expressed by the following
equation

P = P0 (r/r0)−2γ (2)

for a perfect gas, to near zero (i.e. just the pressure of any
surrounding air) at its outside surface.

This means, as illustrated in figure 1, that as the internal
gas pressure P reduces adiabatically with advancing casing
expansion, a release wave propagates inwards from the
casing outer surface. Behind this wave, the casing material
can fracture. Ahead of this wave, the material can still yield
in compressive shear.

According to Taylor [4], the Tresca criterion for shear
failure applies at the point where this effective release
wave reaches the casing inner surface, and this defines
the critical stress condition at which the casing metal is
obliged instead to fracture and then expand as an envelope
of discrete fragments.

The choice of criterion to define the critical stress
condition for through-casing fracture was subsequently
reviewed by Hoggatt and Recht [5] and they proposed a
different failure criterion, i.e. that the stress components,
normal to a shear plane in the casing metal, should sum
to zero. However, this paper calls this new approach by
Hoggatt and Recht into question and argues for the original
Taylor/Tresca criterion, based on the following two points:

Firstly, the Tresca criterion used by Taylor is that most
relevant on the prediction of shear yield in response to
biaxial stresses.

Secondly, Hoggatt & Recht’s criterion predicts failure
at higher strain than does the Taylor/Tresca criterion,
which would thus allow fracture first.

Hoggatt and Recht themselves found evidence of shear
strain localisation into adiabatic shear bands. Considering
the weakened condition of casing material within these
bands, a crack should propagate inwards along such a
band, as soon as the compressive shear could no longer
be maintained. Thus it is hard to see why the stress
components, normal to a shear plane in the casing metal,
should first have to sum to zero, as in Hoggatt & Recht’s
criterion.

Nonetheless, the internal dynamics of expanded metal
casings have a significant impact on the shape, size
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Fig. 1. Illustrating the mechanism identified by Taylor.

distribution and initial velocity of the projected casing
fragments and, for the purposes of this paper, on blast
impulse. The mathematical methods of Hoggatt and Recht
provide a valuable insight into those internal dynamics and
will therefore be reviewed here.

3 Radial dependency of compressive stress

Hoggatt and Recht approach the solution for the dynamic
radius within the casing thickness, at which the critical
stress condition exists, via a number of stages, the last
of which is numerical rather than analytical. Firstly, an
equation of motion is derived for the wall of a cylindrical
bomb. Then, based on casing metal volume conservation,
the dynamic radius a of any point within the casing
thickness can be derived, relative to its initial radius, a0:

a/a0 =
(
r2

/
a2

0 − r2
0

/
a2

0 + 1
)1/2

(3)

from this can be derived the following expression for the
radial pressure pa in the wall, at any radius a:

pa =
[
Pr

/(
r2 + a2

0 − r2
0

)1/2
]
.
[(

R2
0 − a2

0

)/(
R2

0 − r2
0

)]
(4)

In (4), r is the radius of the inner surface, R the outer
surface and a an arbitrary point through the thickness of
the casing, r < a < R. Subscripted terms refer to the radius
of these three points at time t = 0. Equation (2) for the
fall in gas pressure with casing expansion is derived, but is
based on the assumption that the initial mean gas pressure
will be the Chapman-Jouget pressure, PCJ . In reality, PCJ

is only reached just behind a detonation wave and the true
initial mean pressure P0 ≈ 0.42PCJ . An empirical relation
given between the compressive plastic natural strain and
the compressive uniaxial stress, pae:

εp = − (pae/k)1/n (5)

where k is a strength coefficient and n, a work hardening
component. A Von Mises (three-dimensional) description

is given of the compressive uniaxial stress, where σθ and
σZ are the hoop and axial stress components:

pae =−
(

1√
2

) [
(−pa − σθ)2 + (σθ − σZ)2 + (σZ + pa)2

]1/2

Eliminating the underlying elastic strains, as defined
by the tri-axial stress-strain equations that incorporate
Young’s modulus, Y, and Poisson’s ratio, ν, Hoggatt and
Recht derived values of ap, the purely plastically expanded
radius of a differential element of casing originally situated
at radius a0:

ap = a
/[

1 −
(
ν2 + ν

)
pa/Y

]
(7)

Equation (7) is their solution for σθ = 0, the
Taylor/Tresca criterion, rather than Hoggatt & Recht’s own
failure criterion. In (7), a is the actual expanded radius of
the casing thickness element, including the elastic strain.
The final analytical steps are to derive the corresponding
value of the equivalent compressive stress:

pae = pa

(
1 − ν + ν2

)1/2
(8)

and, from (3), (4) and (5) the failure strain at any expanded
radius a within the casing thickness:

a/a0 =
[
1+ (pa/Y)

(
ν2+ν

)]
exp

(
(pa/k)

(
1 − ν + ν2

)1/2
)1/n

(9)
Further details can be found in Hoggatt & Recht’s own

paper [5], however, the above analytical derivation does
not lead to analytical solutions. Values for pa in (5) must be
found by first finding the value of a0 at a selected value of
expansion radius r. Based on equation (3) for the dynamic
radius, a of an element within the casing, and knowing
the instantaneous mean gas pressure from equation (2)
equation (4) therefore becomes:

pa = P0

(
r
r0

)−2γ
 r(

r2 + a2
0 − r2

0

)1/2


[(

R2
0 − a2

0

)/(
R2

0 − r2
0

)]
(10)

Hoggatt and Recht were then able to find, by iteration,
a/a0 values that obeyed both the geometric requirement in
(10) and the stress condition σθ = 0.

As a check on this rather complex iterative method
of deriving failure strain values, it can be shown that the
point at which the failure condition appears at the inner
surface can be found more simply by solving only for the
inner surface of the casing, i.e. when a0 = r0 and a = r.
Based on equation (9), and substituting for the value of
pa = P at inner radius r from equation (2), one can obtain
the following part-logarithmic, part-polynomial equation
for the reciprocal of failure radius r f :

ln

(
r0

r f

)
+ ln

1 + (P0

Y

) ( r f

r0

)2γ (
ν2 + ν

)
+

(P0

k

) ( r f

r0

)2γ (
1 − ν + ν2

)1/2


1/n

= 0

(11)

04001-p.2



DYMAT 2012

25.4

31.75

38.1

44.45

25.4 31.75 38.1 44.45

internal radius, r, mm

ra
d

ii,
 m

m

Casing outer radius 

Casing inner radius 

Progressive locus of 
compressive to tensile 
transition

Failure point 

Fig. 2. Progress of the compressive-tensile stress boundary
though the casing metal.

However, even this equation does not have a straight-
forward analytical solution. Remaining therefore with it-
erative methods, but using equation (11) as a check on the
end values, it is possible to match very closely the values of
a and r at which dynamic failure should occur with those
obtained by Hoggatt & Recht [5] for a worked example
from Taylor [4].

4 Example from Taylor

In order to demonstrate their iterative method, Hoggatt and
Recht used the example of a steel cased bomb given by
Taylor, together with textbook values for Y , k , ν and n for
the mild steel tube of internal radius 1in (0.0254 m) and
external radius 1.25 in (0.0318 m), packed with reduced
density (1.5g/cc) RDX explosive. Of significance here is
that both Hoggatt and Recht and Taylor made the error of
using a PCJ value of 20.9 GPa for the initial pressure P0
when the value used should have been 8.8 GPa.

The values of a0 were stepped in intervals of 0.01in,
0.254 mm from r0 (= 1.0 in, 25.4 mm) to R0 (= 1.25 in,
31.8 mm). The values of r for each value of a0 were then
adjusted by trial and error to bring those values of a/a0
into line with the values of a/a0 derived for each stress
condition pa. A simple macro was written to use the goal
seek function in MS-Excel to look for a value of r for
which the two values of a/a0 had a ratio of 1.0 and it was
found that this gave the necessary values for the required
curves to < ±0.1%.

In figure 2, the straight black lines show the changing
casing inner and outer radii with increasing inner radius.
The casing material is located between these two lines.
The dotted curve, based on the above up-to-date version of
Hoggatt and Recht’s iterative method, plots the loci of radii
a within the dynamic casing thickness at which, according
to Taylor, the material is in transition from compressive to
tensile stress.

This curve effectively shows the progress of a wave,
starting from the outer casing surface, which allows frac-
ture when it reaches the dynamic inner surface (lower
straight line). When the value of a, which is increasing
more slowly than r, is caught up with at r = r f , all

the casing material is in tension and through-fracture can
occur.

Working through method of Hoggatt and Recht, while
retaining the Taylor/Tresca failure criterion, provides the
necessary underpinning in the form of a stress-based frac-
ture methodology to predict modified blast impulse in the
presence of strong casings.

5 Blast impulse modified for casing yield
stress

In a further paper [6] it will be shown that the work energy
EC remaining with the explosive gases at the radius of
casing fracture can be expressed by the following modified
version of equation (1):

EC

EC
=

C + 2M
(
r0

/
r f

)2(γ−1)

C + 2M
(12)

where E is the total work energy (i.e. Gurney energy)
available per unit charge mass, C is the mass of explosive
and M the mass of casing and r f the casing inner radius
at fracture. Applying Taylor’s fracture criterion, the gas
pressure P within the casing can firstly be related to the
radius r f to which the casing has expanded from its initial
radius r0 and to the initial gas internal pressure P0, and
secondly equated to the metal yield stress, σy:

P = P0

(
r0

r f

)2γ

= σy (13)

Therefore, rearranging the right hand equation in (13),
at casing failure:

r0

r f
=

(
σy

P0

)1/2γ

(14)

Using equation (14) to substitute for r/r0 in (12), we
now obtain:

EC

EC
=

C + 2M
(
σy

/
P0

)(γ−1)/γ

C + 2M
(15)

While gas kinetic energy and gas momentum are not
simply related, due to the distribution of velocities within
the gas, the same proportionality should hold for both bare
and cased charges of the same geometry. Therefore, by
taking the square root of the right-hand side of (15), we can
obtain the blast impulse I of the cased charge as a fraction
of the impulse I0 from the same charge without a casing:

I
I0
=

√
C + 2M(σy/P0)(γ−1)/γ

C + 2M
(16)

Thus we have a new equation for the blast impulse
from a cased charge, which only requires us to know the
casing/charge mass ratio, the explosive properties and the
casing metal yield stress.
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6 Experimental comparison

Figure 3, a plot in Gurney parameter space shows good
comparisons between the predictions of equation (16)
and blast impulse data from two independent sets of
experiments, one from an unpublished report by Bishop
and James at AWE Foulness in 1970 and another data set
published much more recently by Flynn and Wharton [7].

Both sets of data were for cylindrical charges, i.e. steel
tubes of varying steel thickness and mass filled with non-
aluminised explosives. In all instances, side-on pressure
gauges were ranged at intervals along a radius struck from
the mid-point charge axis. Dynamic pressure readings have
been time integrated to provide relative side-on impulse
values.

The diagonal straight dotted line is the prediction of
equation (1). It is referred to here as the ‘Gurney Line’
because it represents the condition where the final energy
balance between casing fragments and explosive gases is
that postulated by Gurney [3]. The point in the top right
hand corner is that for a bare charge, in the bottom left
hand corner is the point for an infinitely heavy casing.

The smooth, shallow curves are the predictions of
equation (16), both for the stronger steel (0.96 GPa) and
more powerful explosive used in the BAE Systems exper-
iments, and the milder steel (0.4 GPa) and less powerful
explosive used in the AWE Foulness experiments.

7 Conclusions

Regarding the internal dynamics of the casing metal, the
analytical method of Hoggatt and Recht [5] provides a
valuable expansion and conformation of the methodology

first set out by Taylor, but the Tresca fracture criterion
adopted by Taylor [4] should be adhered to. Significant
misunderstandings regarding the inertia and initial pres-
sure of the explosive gases exist in these previous papers
and should be noted.

The Tresca/Taylor criterion can be used as a basis
on which to derive an equation (16) for cased charge
relative blast impulse which allows for the casing and
explosive dynamic properties. The available experimental
data validate the predictions of this equation, regarding
the effect of different charge compositions and steel casing
yield stresses. It is thus concluded that this equation ought
to replace any empirical equations currently in use to
predict the relative blast impulse of cased charges. Further
work will be required to apply this model to aluminised
and other highly oxygen-deficient explosives.
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