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Abstract. The Mulliken-Boyce constitutive model predicts the dynamic response of crystalline polymers as a function of
strain rate and temperature. This paper describes the Mulliken-Boyce model-based estimation of the constitutive parameters in
a Bayesian probabilistic framework. Experimental data from dynamic mechanical analysis and dynamic compression of PVC
samples over a wide range of strain rates are analyzed. Both experimental uncertainty and natural variations in the material
properties are simultaneously considered as independent and joint distributions; the posterior probability distributions are shown
and compared with prior estimates of the material constitutive parameters. Additionally, particular statistical distributions are
shown to be effective at capturing the rate and temperature dependence of internal phase transitions in DMA data.

1 Introduction

Constitutive relationships are typically developed to cap-
ture the strain-, temperature-, and rate-dependent response
of various materials. This paper examines the rate and
temperature dependence of dynamic mechanical analysis
(DMA) and dynamic compression data for polyvinyl chlo-
ride (PVC). The two principle objectives are (1) propose
a new parameterization of the phase transitions in DMA
data, and (2) establish sensitivity to uncertainty in the esti-
mation of constitutive model parameters of the Mulliken-
Boyce constitutive model for crystalline polymers [1]
using Bayesian inference.

2 Mulliken-Boyce model

The Mulliken-Boyce (M-B) model is a two phase (α and
β) viscoelastic-viscoplastic model, shown schematically as
Maxwell-Weichert elements in Figure 1, that incorporates
both the polymer network stress (B) and the chain stresses
(A) due to the polymerization. The M-B model has been
shown to capture rate-dependent behavior of polymers
[2,3] very accurately, especially the rate-dependent yield
strength and post-yield response.

2.1 Governing equations

The Mulliken-Boyce model proposes two contributions
to the total stress in the material. The intermolecular
stress (TA) resists chain segment rotation and has two
principle rate-activated phases, α and β. Both phases are
modeled as viscoelastic-viscoplastic processes (Figure 1).
The network back stress (TB) along the polymer chain
resists alignment and is modeled as a Langevin stress [4].
The total stress in the system is therefore

Ttotal = TA,α + TA,β + TB. (1)

Using a 1-D approximation, the total stress is

σtotal = σA,α + σA,β + σB (2)

and the strain is

εt = εe + εp = εα + εβ. (3)

It follows that the strain rate is

ε̇t = ε̇e + ε̇p (4)

The 1-D expression for the Langevin (network) back
stress is

σB =
CR

3

√
N
λ
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(
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N

)
, (5)

where λ =
(
U2 + 2U−1/3

)
1/2 is the chain stretch parame-

ter in 1-D, U = exp(ε), and L−1 inverse of the Langevin
function,

L(β) = coth(β) − β−1 (6)

A Padé approximation [5,6] is used to calculate the
inverse Langevin function,

L−1(x) ≈ x
(3 − x2)
(1 − x2)

(7)

Under the assumption of uniaxial response, the linear
system of governing ordinary differential equations be-
comes
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Fig. 1. Maxwell-Weichert element schematic of the Mulliken-
Boyce constitutive model for polymers.

Table 1. Mulliken-Boyce parameters.

Symbol Parameter

σ Stress

ε, ε̇ Strain, strain rate

γ, γ̇ Shear strain, shear strain rate

τ, τ̇ Shear stress, shear stress rate

s Athermal shear stress

θ Temperature (absolute)

kB Boltzmann’s constant

σ Pressure

Cp Heat capacity

ρ Density

Eα (ε̇, θ) Young’s modulus (alpha)

Eβ (ε̇, θ) Young’s modulus (beta)

γ̇
p
α,0 (ε̇, θ) Pre-exponential factor for shear

strain rate (alpha)

γ̇
p
β,0 (ε̇, θ) Pre-exponential factor for shear

strain rate (beta)

∆Gα Phase activation energy (alpha)

∆Gβ Phase activation energy (beta)

αα Pressure coefficient (alpha)

αβ Pressure coefficient (beta)

hα Softening slope (alpha)

hβ Softening slope (beta)

sss,α Steady state preferred athermal
shear stress (alpha)

sss,β Steady state preferred athermal
shear stress (beta)

CR Rubbery modulus√
N Limiting chain extensibility

It is important to note that the strain is carried forward
as a time-dependent parameter in contrast with the stan-
dard practice of assuming constant strain rate. The remain-
ing parameters are explained in Table 1. This addresses the
practical issues of the early time response of polymers to
incident stress waves where the system has not yet reached
dynamic equilibrium and non-ideal experiments where the
rate evolves continuously (i.e., never reaches equilibrium).
Additionally, this approach enables the use of implicitly
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Fig. 2. Simulated stress vs. strain relationship of PVC using
Mulliken-Boyce model at three different temperatures.

rate-dependent parameters (currently being explored as an
improvement to the solution).

2.2 Solution of ODE

The nonlinear system of equations in Eq. (8) is solved
using Matlab ODE solvers. The multistep ode113 function,
based on the Adams-Bashforth-Moulton PECE solver [7],
is used due to the computationally expensive nonlinear
relationships.

An example predicted response for PVC is shown in
Figure 2 at a relatively low strain rate (ε̇ = 10 s−1) for
three temperatures.

3 Bayesian inference of parameters

Constitutive parameter estimation is an inverse problem
wherein experimental data (observations) are used to infer
the underlying parameter value(s) [8]. Bayesian statistics
provide an intuitive, fundamental construct for the con-
sideration of uncertainty in modeling, independent of its
source (e.g., random experimental error vs. process-driven
uncertainties). In this Bayesian framework, the conditional
probability of the unknown parameters (x) based on the
observed data (d) is the posterior probability distribution
function (p) and is given for normally distributed data by

p (x|d) =
1
N

exp

{
−1

2
[x − x0]T Γ−1

0 [x − x0] − ...

−1
2

[d −m (x)]T Γ−1
d [d −m (x)]

}
(9)

where m(x) is the model output based on the unknowns,
x0 is the prior value for the unknown parameters, Γ0 is the
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Fig. 3. DMA storage and loss modulus data from PVC.

covariance matrix, Γd is the covariance matrix of the data,
and N is a normalization constant. Maximizing Eq. (9)
is accomplished using a maximum a posteriori (MAP)
estimator.

In the absence of available information, Bayes’ pos-
tulate states that a uniform prior probability should be
assumed [9]. In the case of continuous variables, a uni-
form pdf over all x (called a diffuse, non-informative, or
Dirichlet prior condition) is used, i.e.,

p(x)→ εx′ (10)

where |x| < (2εx)−1 and is ε−1
x sufficiently large to span the

plausible range of x.
Two different experimental data sets of PVC are an-

alyzed, DMA and dynamic compression. The underlying
parameters estimated are experiment-specific; these are
reviewed in the next two sections.

4 DMA of PVC

4.1 Sample material and geometry

PVC was chosen for study due to the availability of rele-
vant data for comparison [10,11]. Impact resistant PVC
(Type II) was machined from extruded 25.4 mm diameter
rods into samples that measured 60 mm long, 12.5 mm
wide, and 3.2 mm thick. These samples were tested in a
dual cantilever configuration in a TA Instruments Q800
[12,13] at frequencies of 1, 10, and 100 Hz and a tempera-
ture range of −100◦C to 190◦C. The displacement was held
constant at 15 µm for this analysis.

4.2 Experimental DMA data and processing

Typical DMA data for the PVC is shown in Figure 3 at the
measured frequencies of 1, 10, and 100 Hz. The frequency
is converted to strain rate (ε̇) equivalence relationship .[1],

ε̇ = 4ωd0/lg, (11)

where ω is the angular frequency (in rad/s), d0 is the
amplitude of the displacement, and lg is the specimen gage
length. The corresponding time-temperature superposition
for strain is typically included in the analysis using the
WLF equation [14],

T = − C2 ln (ω/ω0)
[ln (ω/ω0) −C1]

− T0, (12)

where T0 and ω0 are reference quantities and C1 and
C2 are constants. An alternative expression for he DMA
shift [15,16] is also considered,

T = T0 + A
(
log ε̇0 − log ε̇

)
(13)

which parameterizes the shift using only two parameters,
T0 and the constant A.

4.3 Phase transition statistical model

In the Mulliken-Boyce model, each of the two phases (α
and β) are due to unique physical mechanisms. In Figure 3,
the loss modulus show two distinct transitions that can
be attributed to the phase: the α transition (i.e., the glass
transition) occurs at T ≈ 350 K and the β transition occurs
at T ≈ 200 K to 250 K.

Since both the α and β transitions are spread over a
finite temperature range, it is appropriate to consider each
parameter as a statistical variable with underlying pdf’s.
The form of these distributions for α and β processes
are modeled differently. This is supported due to the
statistical mechanics of the underlying transition [17], as
discussed in the following sections. Additionally, the two
phases’ properties, such as transition temperatures and
activation energy, are assumed to be independent (not
causally related).

4.3.1 Alpha phase

The loss modulus of the glass transition (α phase) gives
an indication of the irreversible conversion of mechanical
energy into heat by the breaking of inter-chain bonds [17].
In a statistical interpretation, the loss modulus probability
distribution pE′′α is the likelihood of the polymer bond
being broken at a given temperature. The loss modulus of
the α phase (E′′α) is further assumed to be proportional to
the temperature gradient of the storage modulus α phase
(E′α) i.e.,

E′′α (T ) ∝ dE′α/dT (14)

The associated cumulative distribution function, χE′′α of
the bond breaking distribution is given by

χE′′α (T ) =
∫ T

0
pE′′α

(
T ′

)
dT ′ (15)

which can be interpreted as the accumulated loss of poly-
mer strength (i.e., storage modulus) due to the cumulative
effect of bonds as the system heats through the glass
transition. This is taken to be proportional to the storage
modulus probability distribution, pE′α

pE′α (T ) ∝ χE′′α (T ) (16)
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Mahieux [18] proposes a Weibull distribution [19] for
the modulus of a polymer with respect to temperature,
W(T ) due to the cascading interaction of ruptured bonds
as it undergoes a glass transition. The probability distribu-
tion of the loss modulus, E′′α then assumes the form

pE′′α (T ) =W (T ;∆Eα,Tα,mα)

=


∆Eα

mα
Tα

(
T
Tα

)mα−1

e
−
(

T
Tα

)mα

, T ≥ 0,

0, T < 0

(17)

where ∆Eα is a modulus contribution by the α phase, Tα
is the transition temperature, and is the distribution shape
parameter. It follows that the storage modulus distribution
is given by

pE′α (T ) = AαχE′′α (T ) = Aα

∫ T

0
pE′′α

(
T ′

)
dT ′

=


Aα∆Eα

{
1 − exp

[
−

(
T
Tα

)mα]}
, T ≥ 0,

0, T < 0
(18)

where Aα is a constant. The reduced storage modulus
with increasing temperature can then be regarded as a
progressive, fatigue-like accumulation of damage in the
polymer network that reduces the polymer’s strength (due
to the reduced number of available bonds).

4.3.2 Beta phase

For the β phase, the same reasoning applies to the pdf-
to-cdf relationship between the loss and storage modulus.
However, the form of the underlying distribution is differ-
ent since the β phase is a normal distribution [17], i.e.,

pE′′β (T ) = N
(
T ;∆Eβ,Tβ,mβ

)
=
∆Eβ√
2πσTβ

e
−
(

T−Tβ√
2σTβ

)2

(19)

where ∆Eβ is the modulus contribution of the β phase, is
Tβ the transition temperature, and αTβ is the distribution
width. The storage modulus of the β phase is then

pE′′β (T ) =
Aβ∆Eβ

2

1 − erf

T − Tβ√
2σTβ


 (20)

4.3.3 Storage and loss moduli

The overall model for the loss modulus is the superposition
of the contributions from each of the two phases with an
additional normally distributed residual (or background)
loss modulus, i.e.,

E′′ (T ) = E′′α (T )+E′′β (T )+E′′BG (T ) . (21)

The storage modulus is similarly constructed,

E′ (T ) = E′α (T )+E′β (T )+E′BG (T ) (22)

Table 2. Estimation parameters and priors for DMA analysis.

xi αxo,i Units

mα ∞ –

∆Eα ∞ Mpa

Tα 5 K

Aα ∞ –

σTβ ∞ –

∆Eβ ∞ Mpa

Tβ 5 K

Aβ ∞ –

σTBG ∞ –

∆EBG ∞ MPa

TBG 5 K

ABG ∞ –
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Fig. 4. Best fit of the storage and loss modulus of PVC.

4.4 Model-based estimation

The unknown parameters to model the DMA moduli
distributions are given in Table 2. The corresponding
vector of unknowns is

x =
[
∆Eα,Tα,mα, Aα, ∆Eβ,Tβ, σTβ , Aβ,∆EBG,

TBG, σTBG , ABG
]T (23)

The best unknown parameter distributions are initially
found using a stochastic multistart global optimization
routine in Matlab [20]. These points then become the
initial guesses for a deterministic MAP estimator to refine
the estimates further. The results of fitting are shown in
Figure 4. It is important to note that while the best observed
fit (with maximum posterior probability) is not necessarily
a global minimum, the large number of estimates mini-
mizes the likelihood that the global minimum was missed.

A Monte Carlo approach [19] is implemented to
characterize the posterior distributions of the estimates
themselves and to also characterize the sensitivity of the
model to variations in the prior distributions. Figure 5
shows an example of the sensitivity to the distribution
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Fig. 5. Storage modulus sensitivity due to variations in the
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width of the storage modulus, with σTβ = 5 K. Figure 6
shows the posterior distributions for the first six elements
of x. The diagonal elements show the posterior distrib-
utions for each of the parameters while the off-diagonal
terms are indicative of the statistical covariance between
the estimation variables. For example, the posterior dis-
tributions of ∆Eα (x1) and (x4) are normally distributed
while other elements of x appear bimodal. The covariance
also indicates that ∆Eα and ∆Eβare linearly related, which
would be expected since both parameters are assumed to
contribute to the storage and loss moduli via superposition.
The underlying mechanisms for the dependencies be-
tween all of the estimation parameters are currently being
explored.

4.5 Discussion of DMA results

The ability to generate and estimate the statistical distri-
butions for the phase contributions to the modulus based
on polymer chain dynamics is encouraging. It should be

emphasized, however, that the estimates are based on a sin-
gle sample, i.e., a single realization of the material. Further
work remains to determine the distribution uncertainties as
a function of intrinsic material variability or other external
factors, such as processing.

The analysis in this paper assumes uniaxial behavior. If
symmetry is assumed, then only a single β mode would be
expected. However, the DMA method is based on a finite
cantilevered beam in bending; this creates the possibility
that there are in fact two slightly different natural axes due
to the different levels of stress in the principle (orthogonal)
axes of the beam. In this case, it is relevant to entertain
the idea of multiple β contributions with closely spaced but
independent parameters. The skeletal modes would then be
considered as β modes, and by superposition the loss and
storage moduli would be

E′′ (T ) = E′′α (T )+E′′β1 (T )+E′′β2 (T )+E′′BG (T ) . (24)

and

E′(T ) = E′α(T ) + E′β1(T ) + E′β2(T ) + E′BG(T ), (25)

respectively. The extra four parameters enable a more
accurate fit of the data and will be examined in the future.

5 Dynamic compression of PVC

The other experimental method considered is dynamic
compression experiments of PVC. The methods and data
are reviewed in Jordan et al. [21]. The unknown model
parameters in the Mulliken-Boyce model estimated from
the dynamic compression experiment data are

x =
[
CR,
√

N,∆Gα, hα, αα, γ̇
p
α,0,∆Gβ, αβ, γ̇

p
β,0

]T
. (26)

The DMA storage modulus data is used to generate the
elastic modulus for the model. Other parameters are based
on results in the literature [1,10].

Iterative estimation from multiple data sets and dif-
ferent strain rates were performed using a global opti-
mization scheme with different initial guesses. Figure 7
shows results from the estimation of PVC compression
data at one strain rate (ε̇ = 0.01s−1) Consistent with
previous efforts [3], low rate experiments yielded better
estimates of the α phase parameters whereas the β phase
was only active in high rate experiments and cannot be
accurately estimated with low rate data. The posterior
distribution of the α phase parameters is shown in Figure 8.
As with the DMA estimates, the posterior distributions
vary significantly and the underlying causes are being
explored. Additionally, the strong covariances observed in
the off-diagonal terms in Figure 8 imply that additional
consideration to covariance between parameters may be
warranted.

6 Conclusions

A Bayesian framework was implemented for the Mulliken-
Boyce polymer constitutive model. A statistical model for
the storage and loss moduli estimated from DMA was
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developed. A Weibull distribution was used to fit the α
phase parameters whereas a normal distribution was used
to model the β phase. The constitutive parameters of the
Mulliken-Boyce model in dynamic compression experi-
ments were estimated. Finally, the posterior distributions
and model sensitivity to the underlying distributions of
both experiments were characterized using a Monte Carlo
approach.
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