Experiment and Modelling in Structural NMR

November 28th – December 2nd 2011
INSTN – CEA Saclay, France

Rainer Kimmich
University of Ulm, Germany

NMR diffusometry
Molecular dynamics
in complex systems
probed over many decades
of times

[05003]

Organized by
Thibault Charpentier
Patrick Berthault
Constantin Meis

thibault.chapentier@cea.fr
patrick.berthault@cea.fr
constantin.meis@cea.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
NMR diffusometry:
Molecular dynamics in complex systems
probed over many decades of time

Rainer Kimmich

University of Ulm, Germany
rainer.kimmich@uni-ulm.de

Outline:
- complex systems
- "normal" and "anomalous" diffusion
- dynamic structure factor
- field-gradient NMR diffusometry
- application to polymer melts
- incoherent neutron scattering
- dynamic light scattering
- intermolecular NMR relaxometry
- isotopic interdiffusion
- time scales of diffusion measurements
Complex systems:
- obstacles
- confinements
- pores
- surface adsorption and ordering
- domains
- anisotropy
- excluded volume
- chain connectivity
- topological constraints
- tortuosity

Random-walk trajectories can be extremely different:

Brown

Lévy

Characterization of trajectories by diffusion:

- Particles (atoms, molecules, colloids, droplets, ...) treated as random walkers
 → displacement r in time t

- Propagator (probability distribution, probability density function, ...)
 → probability density $P(r, t)$
 for a displacement r in time t

- $P(r, t) d^3r$ → probability that the particle is displaced from the origin to the volume element d^3r in a distance r

- Mean square displacement (or variance or second moment of $P(r, t)$)
 → $\langle r^2 \rangle \equiv \int r^2 P(r, t) d^3r$

Formal classification

in the case of power-law limits

$\langle r^2 \rangle \equiv \int r^2 P(r, t) d^3r \propto t^\alpha$

- $\alpha = 0$: localized position
- $\alpha < 1$: subdiffusive displacements
- $\alpha = 1$: normal diffusion
- $\alpha > 1$: superdiffusive displacements
- $\alpha = 2$: ballistic displacements
- $\alpha = 3$: turbulent displacements

Fickian diffusion equation (in 1 dimension)
\[\frac{\partial P}{\partial t} = D \frac{\partial^2}{\partial x^2} P \]

Fractional diffusion equation
\[\frac{\partial P}{\partial t} = \alpha R^{1-\alpha}_D \frac{\partial^2}{\partial x^2} P(x,t) \]

\(R^{1-\alpha}_D\): Riemann-Liouville operator
\(\alpha\): diffusion exponent (R. Metzler, J. Klafter, 2000)

Gaussian:
\[P(x,t) = \frac{1}{2\pi Dt} \exp\left(\frac{-x^2}{4Dt}\right) \]

Initial condition: \(P(x,0) \sim \delta(0)\)

Stretched exponential:
\[P(x,t) \propto \frac{1}{\sqrt{4\pi D t^{\alpha/2}}} \exp\left(-\frac{2-\kappa}{2} \left(\frac{x}{\sqrt{D t^{\alpha/2}}}\right)^\kappa\right) \]

\(\kappa<1\):
\[\langle x^2(t) \rangle \propto D t \]
\[\langle x^2(t) \rangle \propto D t^{1/2} \]

2 classes of subdiffusive anomalies (\(\alpha<1\)):

a) Diffusion under geometrical restrictions
(waiting time distribution due to trapping
in geometric or energetic traps)

\(\rightarrow\) non-Gaussian propagator
examples: reptation, random walk on fractals

b) Time dependent diffusion coefficient
\(D=D(t)\) in a homogeneous medium
(due to mutual obstruction)

\(\rightarrow\) Gaussian propagator
examples: single-file diffusion, Rouse mode based diffusion
Probing of diffusive displacements:

a) tracer experiment
 → imaging of isotopic interdiffusion
b) inter-molecular dipolar relaxation
 → field-cycling NMR relaxometry
c) (incoherent) dynamic structure factor
 → (i) field-gradient NMR diffusometry
 (ii) incoherent neutron scattering
 (iii) dynamic light scattering

\[
G_{inc} = \exp\left\{ -\frac{1}{6}q^2 \left\langle r_{self}^2 \right\rangle \right\}
\]

\[q \quad \text{“wave vector”} \rightarrow \text{specific for experimental technique} \]

normal diffusion: \[\left\langle r_{self}^2 \right\rangle = \left\langle r_{self}^2(t) \right\rangle = 6Dt \]

\[D \quad \text{self-diffusion coefficient} \]

Field Gradient NMR Diffusometry

time scale 1 ms … 1 s
field-gradient NMR diffusometry:

experimental protocol: spin echo of any sort + field gradient

- gradient echo
- Hahn
- stimulated
- coherence transfer
- rotary
- ...

principle: dephasing + rephasing of spin coherences

gradient echo:

Larmor frequency: \(\omega_L = \gamma B \)
"helix"
position: \(R(0) \)
field: \(B(0) = gz(0) \)

"wave number" \(q = \gamma g \tau \)
position: \(R(t) \)
field: \(B(t) = gz(t) \)

180° RF pulse instead of inversion of the gradient
complex representation of transverse magnetization in the rotating frame:

\[
\begin{align*}
\phi &= \phi_i \\
x' &= m(0) = M_r(0) + iM_i(0) \\
&= |m(0)|\exp\{i\phi_0\}\ \\
y' &= m(t) = M_r(t) + iM_i(t) \\
&= |m(t)|\exp\{i\phi_t\}
\end{align*}
\]

Larmor frequency
\[
\omega_L = \gamma B
\]

\[
\exp\{i\omega t - \omega_0 t\} = \exp\{i(\gamma B(t) - \gamma B(0))\}
\]

\[
\exp\{i\gamma g_z(t) - \gamma g_z(0)\} = \exp\{e^{-iqR}\} e^{iqR(t)}
\]

→ incoherent dynamic structure factor

"wave number"
\[
q = \gamma g \tau
\]

field-gradient NMR diffusometry

measurand: The echo attenuation function

\[
a(t) \propto \mathcal{G}_{inc}(t) = \left\langle e^{-i\mathbf{q} \cdot \mathbf{R}(0)} e^{i\mathbf{q} \cdot \mathbf{R}(t)} \right\rangle
\]

\[
\text{Gauss}\
\exp\left\{- \frac{1}{6} q^2 \langle r_{self}^2 \rangle \right\}
\]

\[
\text{Einstein}\
\exp\left\{-q^2Dt \right\}
\]

"wave number"
\[
q = \gamma g \tau
\]

05003-p.8
Field-gradient NMR diffusometry

\[a(q, \tau, t) = \exp \left\{-q^2 D \left(t - \tau / 3 \right) \right\} \]

NMR diffusometry in the fringe field of a superconducting magnet

Attenuation of the stimulated echo

\[A \propto \exp \left(-\frac{1}{6} < r^2 > q^2 \right) \exp \left(-\tau_2 / T_1 \right) \exp \left(-2\tau_1 / T_2 \right) \]

wave number \(q = \gamma g \tau_1 \)

Application to polymer melts
under confinement in pores
Tube/reptation concept by Doi and Edwards

(definition of 4 characteristic time constants)

\[\tau_s \] segment fluctuation time
\[\tau_e \] entanglement time
\[\tau_R \] (longest) Rouse chain relaxation time
\[\tau_d \] disengagement time

NMR diffusometry and the tube/reptation concept

\[a(\tilde{q}, t) = \left\langle e^{i\tilde{q} \cdot \tilde{r}(t)} \right\rangle = \left(\left\langle e^{i\tilde{q} \cdot \tilde{r}_s(t)} \right\rangle \right) \exp(-q^2D_0 t) \]

(wave vector \(\tilde{q} = \gamma \tilde{g} \tau \))

- anomalous segment diffusion

\[a_s(\tilde{q}, t) = \left\langle \frac{1}{3} \left(\frac{2\pi}{3} d |s| \right)^{-1/2} e^{-3r_s^2/2d^2} e^{i\tilde{q} \cdot \tilde{r}_s(t)} dr_s \right\rangle = \exp \left(\frac{q^4d^2 \left\langle s^2(t) \right\rangle}{72} \right) \operatorname{erfc} \left(\frac{q^2d \sqrt{\left\langle s^2(t) \right\rangle}}{6\sqrt{2}} \right) \]

average over all \(r_s \) for a given \(s \)

- mean square curvilinear segment displacements (limits (II)DE and (III)DE)

\[\left\langle s^2(t) \right\rangle = \frac{2D_0 t}{N + \frac{12d^2D_0 t}{N^2b^4}} + \frac{2b\sqrt{D_0 t}}{\sqrt{3\pi} + 18\frac{\sqrt{D_0 t}}{Nb}} \]

\(d \) tube diameter
\((b, N, D_0 \text{ known}) \)

typical echo attenuation curves measured in linear PEO confined in pores of a solid methacrylate matrix (fringe field technique; 60 T/m; 200 MHz)

echo attenuation formalism:

a) reptation fits the data
b) 1 fitting parameter:

pore diameter \(d_{pore} = (8+/1) \text{ nm} \)
Quasielastic neutron scattering

time scale 10^{-11} s ... 10^{-7} s

quasi-elastic neutron scattering

experimental set-up:

scattering vector:

~ momentum transfer
The primary measurand:

Double differential cross-section

\[
\frac{d^2\sigma}{d\Omega dE_{k'}}
\]

= rate of counts of scattered neutrons relative to

(i) the incoming flux
(ii) the solid angle element of the detector \(d\Omega\)
(iii) the energy interval resolved by the detector \(dE_{k'}\)

Two cases:

a) incoherent scattering (\(\rightarrow\) protons):
 scattered waves of different scattering centers are uncorrelated
 (no constructive interference)

b) coherent scattering (\(\rightarrow\) deuterons):
 scattered waves of pairs of scattering centers are correlated
 (constructive interference)

incoherent scattering:

\[
\left(\frac{d^2\sigma}{d\Omega dE_{k'}} \right)_{\text{inc}} \approx \int_{-\infty}^{\infty} e^{-i\omega t} \left\langle e^{-i\mathbf{q} \cdot \mathbf{R}(0)} e^{i\mathbf{q} \cdot \mathbf{R}(t)} \right\rangle dt
\]

\[
\mathcal{G}_{\text{inc}}(t) = \left\langle e^{-i\mathbf{q} \cdot \mathbf{R}(0)} e^{i\mathbf{q} \cdot \mathbf{R}(t)} \right\rangle
\]

"incoherent dynamic structure factor"

or "incoherent scattering function"
incoherent quasi-elastic neutron scattering

incoherent scattering:

\[G_{\text{inc}}(t) = \left\langle e^{-iq \cdot R(0)} e^{iq \cdot R(t)} \right\rangle \]

\[
\text{Gauss} = \exp \left\{ -\frac{1}{6} q^2 \left\langle r_{\text{self}}^2 \right\rangle \right\}
\]

\[
\text{Einstein} = \exp \left\{ -q^2 D t \right\}
\]

double differential cross-section for incoherent scattering:

\[
\frac{\partial^2 \sigma}{\partial \Omega \partial E_{k'}}_{\text{inc}} \propto \frac{\partial^2 \sigma}{\partial \Omega \partial \omega}_{\text{inc}} \propto \frac{Dq^2}{\omega^2 + (Dq^2)^2}
\]

incoherent quasi-elastic neutron scattering

exponential decays

Lorentzian shapes

05003-p.15
dynamic light scattering

Experimental set-up:

- **Light source (laser)**
- **Sample**
- **Detector (photomultiplier)**

Measurand: Intensity of scattered light

\[
I'(q,t) \propto \left| E'(q,t) \right|^2
\]

= square of electric-field amplitude

\[
q = \frac{4\pi n(r,t)}{\lambda} \sin \theta / 2
\]

= scattering vector

Dynamic light scattering

Autocorrelator forms second-order correlation function

\[
G_2(\tau) = \frac{\langle I'(q,t+\tau) I'(q,t) \rangle}{\langle I'(q,t) \rangle^2}
\]

Scattering theory provides first-order correlation function

\[
G_1(\tau) = \frac{\langle E'(q,t+\tau) E''(q,t) \rangle}{\langle |E'(q,t)|^2 \rangle}
\]

Siegert relation connects both correlation functions

\[
G_2(\tau) = 1 + \left[G_1(\tau) \right]^2
\]
dynamic light scattering

\[G_{\tau}(\tau) \equiv \frac{\langle E'(q,t+\tau)E''(q,t) \rangle}{\langle |E'(q,t)|^2 \rangle} = \frac{\langle \delta \tilde{c}(q,t+\tau)\delta \tilde{c}(q,t) \rangle}{\langle \delta \tilde{c}(q,t)^2 \rangle} = e^{-q^2D\tau} \]

Equation

same as before:

incoherent dynamic structure factor

Up to now:

Incoherent neutron scattering, field-gradient NMR diffusometry, and light scattering, i.e., 3 totally different experiments, are commonly sensitive to incoherent dynamic structure factors

"wave number"

\[q_{\text{NMR}} = \gamma g \tau \]

scattering vector

\[q_{\text{neutron}} = 4\pi \lambda^{-1} \sin \theta/2 \]

"\[q_{\text{light}} = 4\pi n(r,t) \lambda^{-1} \sin \theta/2 \]

Intermolecular field-cycling NMR relaxometry

Time scale \(10^{-8} \text{ s} \ldots 10^{-4} \text{ s}\)
The temporal autocorrelation function of dipolar spin interactions,
\[G_m(t) \propto \left\langle \frac{Y_{2,m}(\vartheta_0,\varphi_0)Y_{2,-m}(\vartheta_1,\varphi_1)}{r_0^3 r_1^3} \right\rangle_{\text{ens}} \]
decays by any fluctuation:
\[r = r(t), \quad \varphi = \varphi(t), \quad \vartheta = \vartheta(t) \]

Intermolecular dipolar interactions:

correlation function of the dipole pair \(k,l \)
\[G_{k,l}^{(m)}(t) = \left\langle \frac{y_{2,m}^*(r) y_{2,m}^*(0)}{r^3(t) r^3(0)} \right\rangle \]

probability that dipole \(l \) is displaced from \(r'(0) \) to \(r'(t) \)

mean squared displacement relative to dipole \(k \)
\[\left\langle \Delta r'^2(t) \right\rangle = \frac{1}{2} \left\langle r^2(t) \right\rangle \]

Evaluation of the relative intermolecular mean square displacement from field-cycling NMR relaxometry data

- spin-lattice relaxation by dipolar coupling of protons
- distinction of intra- and inter-molecular contributions
- separable by mixtures of deuterated and undeuterated molecules

\[
\frac{1}{T_1^{\text{inter}}} = \frac{1}{T_1^{\text{total}}} - \frac{1}{T_1^{\text{intra}}} = \left(\frac{\mu_0}{4\pi} \right)^2 \frac{2\pi \sqrt{3} \left(1 + 2\sqrt{2} \right) \gamma^4 h^2 \rho_{\text{spin}}}{5} \frac{\langle \Delta r^{12} \rangle}{\omega} \left(\frac{3}{3} \right)
\]

\[
\langle \Delta r^{12} \rangle = \left\{ \left(\frac{4\pi}{\mu_0} \right)^2 \frac{2\pi \sqrt{3} \left(1 + 2\sqrt{2} \right) \gamma^4 h^2 \rho_{\text{spin}}}{5\omega} \frac{T_{1,\text{inter}}}{T_1} \right\}^{2/3}
\]

\[t = \frac{1}{\omega} \rightarrow \text{variation of the angular frequency } \omega = \gamma B_0 \]

Field-cycling NMR relaxometry

- RF
- frequency: \(\omega = \gamma B_0 \)
- relax. rate: \(\frac{1}{T_1} = C \left[I(\omega) + 4I(2\omega) \right] \)
- spectr. dens.: \(I(\omega) = F_r \{ G(t) \} \)

Dipolar correlation function:
\[
G(t) = \left\langle \frac{Y_2^m(0)Y_2^{-m}(t)}{r^3(0)r^3(t)} \right\rangle
\]

Quadrupolar corr. function:
\[
G(t) = \left\langle Y_2^m(0)Y_2^{-m}(t) \right\rangle
\]
Application of the combined techniques to polymer melts

time scale $10^{-11} \, \text{s} \ldots 10^{-1} \, \text{s}$

Neutron scattering (data from M. Krutyeva, D. Richter, FZ Jülich)
NMR microimaging of isotopic inter-diffusion

time scale 10 s ...

\[C(x,t) = \frac{1}{2} C_0 \text{erfc} \left(\frac{x-x_0}{2\sqrt{Dt}} \right) \]

Interdiffusion

Probing **translational fluctuations** by diverse techniques

- quasi-elastic neutron scattering
- inter-molecular field-cycling NMR relaxometry
- variants of field-gradient NMR diffusometry
- NMR microimaging of isotopic (inter)diffusion

10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^0 10^3 10^6

t/s

limit: molecular vibrations, collision times

limit: time frame of the study

a take-home message: combine and enjoy!