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Abstract. The electromagnetic structure of the pseudoscalar meson nonet is completely
described by the sophisticatedUnitary& Analytic model, respecting all known theoretical
properties of the corresponding form factors.

1 Introduction

All hadrons are compound of constituent quarks. As a consequence in EM interactions they manifest a
non-point-like structure, completely described by scalar functionsFi(t), called electromagnetic (EM)
form factors (FFs), wheret is squared momentum transferred by the virtual photonγ∗. If Mγ∗ → M ⇒
Fi(t) are called elastic FFs. IfMγ∗ → A′ or γ ⇒ Fi(t) are called transition FFs.

According to SU(3) classification there are scalar meson, pseudoscalar meson, vector meson and
tensor meson [1] multiplets to be bound states of light quarksu, d, s. For a description of their EM
structure we useUnitary& Analytic (U& A) model [2], which is a consistent unification of pole and
continuum contributions, depends on effectivetin thresholds and the coupling constant ratios (fMMV/ fV )
as free parameters. In order to determine them numerically one needs a comparison of theU& A model
with some experimental data. Therefore, farther our attention is concentrated only to the nonet of pseu-
doscalar mesonsπ−, π0, π+, K−, K0, K̄0, K+, η, η′, for which abundant experimental information exists.

2 First generally

Since pseudoscalar mesonsM have spin 0− there is only one FFFi(t) completely describing their EM
structure, which is defined by the parametrization

< p2|Jµ(0)|p1 >= eFM(t)(p1 + p2)µ. (1)

of the matrix element of the EM current.
Making use of the transformationJµ(x) and also the one-particle state vectors< p2| and|p1 > with

regard to all three discreteC, P,T transformations simultaneously thenFM(t) = −FM̄(t) e.g.Fπ+ (t) =
−Fπ−(t); FK+(t) = −FK−(t); FK0(t) = −FK̄0(t). From the latter it follows for true neutral pseudoscalar
mesons π0, η, η′ Fπ0(t) = Fη(t) = Fη′(t) ≡ 0 for all values from the interval−∞ < t < +∞.

3 U& A model of meson EM FFs

There is a general belief that all EM FFs are analytic in t-plane, besides branch points i.e. cuts on the
positive real axis.
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TheU& A model is a consistent unification of finite number of complex conjugate pairs of poles
contributions and just continua contributions represented by cuts on the positive real axis.

Experimental fact of the creation ofρ, ω, φ, ρ′, ω′, φ′, etc. ine+e− → hadrons in the first approxi-
mation can be taken into account by the standardV MD model with stable vector mesons

FM(t) =
∑

V

m2
V

m2
V − t

( fMMV/ fV ), (2)

which automatically respects the asymptotic behavior of pseudoscalar meson EM FFs

FM(t)|t|→∞ ∼ t−1 (3)

as predicted by the constituent quark model of hadrons.
Afterwards theV MD model is unitarized by an incorporation of two-cut approximation of the

analytic properties of EM FFs with the help of the non-linear transformation

t = t0 +
4(tin − t0)

[1/W(t) −W(t)]2
, (4)

wheret0 is the square-root branch point corresponding to the lowest possible threshold,tin is an ef-
fective square-root branch point simulating contributions of all higher relevant thresholds given by the
unitarity condition and

W(t) = i

√

( tin−t0
t0

)1/2 + ( t−t0
t0

)1/2 −

√

( tin−t0
t0

)1/2 − ( t−t0
t0

)1/2

√

( tin−t0
t0

)1/2 + ( t−t0
t0

)1/2 +

√

( tin−t0
t0

)1/2 − ( t−t0
t0

)1/2
(5)

is the conformal mapping of the four-sheeted Riemann surface into oneW-plane, to be just inverse to
the previous non-linear transformation.

As a result every term
m2

V

m2
V−t

in V MD representation is factorized

m2
r

m2
r − t

=













1−W2

1−W2
N













2
(WN −Wr0)(WN +Wr0)(WN − 1/Wr0)(WN + 1/Wr0)

(W −Wr0)(W +Wr0)(W − 1/Wr0)(W + 1/Wr0)

into the asymptotic term (1−W2

1−W2
N
)2 completely determining the asymptotic behavior∼ t−1 of EM FF and

into a resonant term(WN−Wr0)(WN+Wr0)(WN−1/Wr0)(WN+1/Wr0)
(W−Wr0)(W+Wr0)(W−1/Wr0)(W+1/Wr0) , for | t |→ ∞ turning out to real constant. The

subindex ”0” means that still stable vector-mesons are considered.
Generally, one can prove ifm2

r −Γ
2
r /4 < tin ⇒ Wr0 = −W∗r0 and ifm2

r −Γ
2
r /4 > tin ⇒ Wr0 = 1/W∗r0,

which together with an introduction of the non-zero width of resonances by a formal substitution
m2

r → (mr − iΓr/2)2 lead to theU& A model of meson EM structure

FP[W (t)] =













1−W2

1−W2
N













2

×

×















∑

i

(WN −Wi)(WN −W∗i )(WN − 1/Wi)(WN − 1/W∗i )

(W −Wi)(W −W∗i )(W − 1/Wi)(W − 1/W∗i )
( fiPP/ fi) +

+
∑

j

(WN −W j)(WN −W∗j )(WN +W j)(WN +W∗j )

(W −W j)(W −W∗j )(W +W j)(W +W∗j )
( f jPP/ f j)















.

Consequently, theU& A model of meson EM structure takes the form to be analytic in the whole
complext-plane besides two cuts on the positive real axis.
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Fig. 1. Analytic properties of charged pions EM FFs and prediction of pion EM FF behavior byU& A model.

4 Now one by one

Charged pions π±: The analytic properties ofFπ(t) are presented in Fig.1. In comparison with expres-
sionFP[W (t)] there is additional left-hand cut on the II.Riemann sheet.

The latter is explained by the following way. Starting from the elastic unitarity condition forFπ(t)
1
2i {Fπ(t + iε)− F∗π(t + iε)} = A1∗

1 (t + iε).Fπ(t + iε) one can derive the expression for pion EM FF on the
II.Riemann sheet [Fπ(t)] II =

Fπ(t)
1+2iA1

1(t)
whereA1

1(t) is theP-wave isovectorππ-scattering amplitude, the

analytic properties of which consist of right-hand unitary cut 4m2
π < t < ∞ and of left-hand dynamical

cut−∞ < t < 0. Taking into account the fact that the contribution of any cut in Padé approximation
can be represented by alternating zeros and poles on the place of the cut then we do it inU& A model
of Fπ[W (t)].

From the same elastic unitarity condition andδ11(t)q→0 ∼ a1
1q3 one gets the threshold behavior of

ImFπ(t) to be transformed into 3 threshold conditionsImFπ(t)q=0 =
dImFπ(t)

dq q=0
=

d2ImFπ(t)
dq q=0

≡ 0,

which reduce a number of (fvππ/ fv) as free parameters.
Taking into account both these notes and also the normalization explicitly one gets theU& A pion

EM FF model [3]

Fπ[W (t)] =













1−W2

1−W2
N













2 (W −Wz)(WN −Wp)

(WN −Wz)(W −Wp)
×

×















(WN −Wρ)(WN −W∗ρ)(WN − 1/Wρ)(WN − 1/W∗ρ)

(W −Wρ)(W −W∗ρ)(W − 1/Wρ)(W − 1/W∗ρ)
( fρππ/ fρ) +

+
∑

v=ρ′,ρ′′

(WN −Wv)(WN −W∗v )(WN +Wv)(WN +W∗v )
(W −Wv)(W −W∗v )(W +Wv)(W +W∗v )

( fvππ/ fv)















with ( fρ′ππ/ fρ′) =

Nρ′′

|Wρ′′ |
4

Nρ′

|Wρ′ |
4 −

Nρ′′

|Wρ′′ |
4

−

Nρ′′

|Wρ′′ |
4 +(1+2

Wz .Wp
Wz−Wp

.Re[Wρ(1+|Wρ |−2)])Nρ

Nρ′

|Wρ′ |
4 −

Nρ′′

|Wρ′′ |
4

( fρππ/ fρ)

and (fρ′′ππ/ fρ′′) = 1−

Nρ′′

|Wρ′′ |
4

Nρ′

|Wρ′ |
4 −

Nρ′′

|Wρ′′ |
4

+ [

Nρ′′

|Wρ′′ |
4 +(1+2

Wz .Wp
Wz−Wp

.Re[Wρ(1+|Wρ |−2)])Nρ

Nρ′

|Wρ′ |
4 −

Nρ′′

|Wρ′′ |
4

− 1]( fρππ/ fρ).

Due to theρ − ω interference effect one has to carry out the fit of existing data by| Fπ[W (t)] +

R.eiφ m2
ω

m2
ω−t−imωΓω

| with φ = arctg mρΓρ
m2
ρ−m2

ω
.

A description of existing data in space-like and time-like regions simultaneously with parameters
valuestin = (1.296±0.011)GeV2; R = 0.0123±0.0032;Wz = 0.3722±0.0008;Wp = 0.5518±0.0003;
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mρ = (759.26± 0.04)MeV; Γρ = (141.90± 0.13)MeV; mρ′ = (1395.9± 54.3)MeV; Γρ′ = (490.9±
118.8)MeV mρ′′ = (1711.5± 63.6)MeV; Γρ′′ = (369.5± 112.7)MeV; ( fρππ/ fρ) = 1.0063± 0.0024;
χ2/nd f = 1.58; is presented in Fig.1.

Charged and neutral kaons K±, K0, K̄0:

The K+ andK0 belong to the same isomultiplet withI = 1/2. Then one can introduce, generally,
the EM current ofK, which splits into sum of isotopic scalar and isotopic vector.

The corresponding FFs suitable for a construction of theU& A models areF s
K(t) = 1

2[FK+(t) +
FK0(t)], FK+(t) = F s

K(t) + FvK(t), FvK(t) = 1
2[FK+(t) − FK0(t)], FK0(t) = F s

K(t) − FvK(t)
from where the normalizationsF s

K(0) = FvK(0) = 1
2; FK+(0) = 1; FK0(0) = 0; follow. The

specific 6 resonance (ρ, ω, φ, ρ′, φ′, ρ′′) U& A model of the kaon EM structure has the form [4]

F s
K [V (t)] =















1− V2

1− V2
N















2












1
2

(VN − Vω)(VN − V∗ω)(VN − 1/Vω)(VN − 1/V∗ω)
(V − Vω)(V − V∗ω)(V − 1/Vω)(V − 1/V∗ω)

+

+















(VN − Vφ)(VN − V∗φ)(VN − 1/Vφ)(VN − 1/V∗φ)

(V − Vφ)(V − V∗
φ
)(V − 1/Vφ)(V − 1/V∗

φ
)
−

−
(VN − Vω)(VN − V∗ω)(VN − 1/Vω)(VN − 1/V∗ω)

(V − Vω)(V − V∗ω)(V − 1/Vω)(V − 1/V∗ω)















( fφKK/ fφ) + (6)

+















(VN − Vφ′ )(VN − V∗φ′ )(VN − 1/Vφ′ )(VN − 1/V∗φ′ )

(V − Vφ′ )(V − V∗
φ′

)(V − 1/Vφ′ )(V − 1/V∗
φ′

)
−

−
(VN − Vω)(VN − V∗ω)(VN − 1/Vω)(VN − 1/V∗ω)

(V − Vω)(V − V∗ω)(V − 1/Vω)(V − 1/V∗ω)















( fφ′KK/ fφ′ )















FvK [W (t)] =















1−W2

1−W2
N















2












1
2

(WN −Wρ)(WN −W∗ρ)(WN − 1/Wρ)(WN − 1/W∗ρ)

(W −Wρ)(W −W∗ρ)(W − 1/Wρ)(W − 1/W∗ρ)
+

+















(WN −Wρ′)(WN −W∗ρ′)(WN − 1/Wρ′ )(WN − 1/W∗ρ′ )

(W −Wρ′ )(W −W∗ρ′)(W − 1/Wρ′ )(W − 1/W∗ρ′ )
−

−
(WN −Wρ)(WN −W∗ρ)(WN − 1/Wρ)(WN − 1/W∗ρ)

(W −Wρ)(W −W∗ρ)(W − 1/Wρ)(W − 1/W∗ρ)















( fρ′KK/ fρ′) + (7)

+















(WN −Wρ′′)(WN −W∗ρ′′)(WN − 1/Wρ′′ )(WN − 1/W∗ρ′′ )

(W −Wρ′′)(W −W∗ρ′′)(W − 1/Wρ′′ )(W − 1/W∗ρ′′ )
−

−
(WN −Wρ)(WN −W∗ρ)(WN − 1/Wρ)(WN − 1/W∗ρ)

(W −Wρ)(W −W∗ρ)(W − 1/Wρ)(W − 1/W∗ρ)















( fρ′′KK/ fρ′′)















.

Both functions are analytic in the whole complext-planes besides two cuts on the positive real axis,
generated byts

0 = 9m2
π and ts

in in F s
K [V (t)] and by tv0 = 4m2

π and tvin in FvK [W (t)]. They are real on
the whole real negative axis up to positive valuests

0 = 9m2
π andtv0 = 4m2

π, respectively, automatically
normalized to 1/2 withImF s

K(t) , 0 andImFvK(t) , 0, starting from 9m2π and 4m2
π, respectively, as it

is required by the unitarity conditions. They possess complex conjugate pairs of poles on unphysical
sheets of the Riemann surface, corresponding to considered vector-mesons with quantum numbers of
the photon.

A simultaneous reproduction of all existing kaon EM FF data by theU& A models is presented in
Fig.2 and the following values of free parameters of the model have been determined (mρ, Γρ, mω, Γω
are fixed at the TABLE values)qs

in =
√

(ts
in − 9)/9 = 2.2326[mπ]; qvin =

√

(tvin − 4)/4 = 6.6721[mπ];
( fωKK/ fω) = 0.14194; (fρKK/ fρ) = 0.5615;
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Fig. 2. Prediction of of charge and neutral kaon EM FFs behavior byU& A model.

mφ = 7.2815[mπ]; mρ′ = 10.3940[mπ]; Γφ = 0.03733[mπ]; Γρ′ = 1.6284[mπ];
( fφKK/ fφ) = 0.4002; (fρ′KK/ fρ′ ) = −.3262;
mφ′ = 11.8700[mπ]; mρ′′ = 13.5650[mπ]; Γφ′ = 1.3834[mπ]; Γρ′′ = 3.3313[mπ];
( fφ′KK/ fφ′ ) = −.04214; (fρ′′KK/ fρ′′ ) = −.02888

What about π0, η, η′:
They are true neutral particles and then their elastic EM FFsFπ0(t) = 0; Fη(t) = 0; Fη′(t) = 0 i.e.

these particles are point-like according to EM interactions.
However, one can define nonzero single FF for eachγ∗ → γP transition by a parametrization of

the matrix element of the EM current< P(p) | JEM
µ | 0 >= εµναβpνǫαkβFγP(q2) with ǫα to be the

polarization vector ofγ, andεµναβ is antisymmetric tensor.
The transition FFs are related to corresponding cross sections

σtot(e+e− → Pγ) = πα
2

6 (1−
m2

P
t )3 | FPγ(t) |2

giving experimental data onFπ0γ(t), Fηγ(t) andFη′γ(t) in t > 0 region.
A straightforward calculation ofFPγ(t) in QCD is impossible. One has to construct sophisticated

phenomenological models.
In a construction of theU& A model it is again suitable to splitFPγ(t) into two terms depend-

ing on the isotopic character of the photonFPγ(t) = F I=0
Pγ (t) + F I=1

Pγ (t) whereF I=0
Pγ (t) is saturated by

isoscalar vector-mesonsω, φ, ω′, φ′ etc. andF I=1
Pγ (t) is saturated by isovector vector-mesonsρ, ρ′, ρ′′

etc. However, there is a question how many vector-meson resonances have to be taken into account. It
is prescribed by the existing data interval on the corresponding FF int > 0 region.

The data onπ0γ transition FF allow to consider all 3 ground state vector mesons,ρ(770),ω(782),
φ(1020) and alsoω′(1420) andρ′(1450), in order to construct automatically normalizedU& A models.

With the aim of obtaining comparable results, the same number of resonances is considered also
for η andη′.

In the analysis the resonance parameters are fixed at the TABLE values, the normalization of FFs

areFPγ(0) = 2
αmP

√

Γ(P→γγ)
πmP

whereΓ(P→ γγ) are fixed at the world averaged values from TABLE.

The FPγ(t) FFs are analytic int - plane besides the cut fromt = m2
π0 up to+∞. Then theU& A

model ofFPγ(t) takes the form [5]

F I=0
Pγ [V (t)] =















1−V2

1−V2
N















2

1
2FPγ(0)H(ω′) + [L(ω) − H(ω′)]aω + [H(φ) − H(ω′)]aφ}

F I=1
Pγ [W (t)] =















1−W2

1−W2
N















2

{ 12FPγ(0)H(ρ′) + [L(ρ) − H(ρ′)]aρ}

with L(ω) = (VN−Vω)(VN−V∗ω)(VN−1/Vω)(VN−1/V∗ω)
(V−Vω)(V−V∗ω)(V−1/Vω)(V−1/V∗ω) ; H(i) =

(VN−Vi)(VN−V∗i )(VN+Vi)(VN+V∗i )
(V−Vi)(V−V∗i )(V+Vi)(V+V∗i ) ; i = φ, ω′

L(ρ) =
(WN−Wρ)(WN−W∗ρ )(WN−1/Wρ)(WN−1/W∗ρ )

(W−Wρ)(W−W∗ρ )(W−1/Wρ)(W−1/W∗ρ )
; H(ρ′) =

(WN−Wρ′ )(WN−W∗
ρ′

)(WN+Wρ′ )(WN+W∗
ρ′

)

(W−Wρ′ )(W−W∗
ρ′

)(W+Wρ′ )(W+W∗
ρ′

)

and the normalization pointsV(0) = VN , W(0) = WN .
The model depends on 5 free parametersts

in, t
v
in, a j = ( fγP j/ f j), j = ρ, ω, φ determined in an

optimal description of existing data.
for π0: see Fig.3
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Fig. 3. Prediction ofπ0γ transition EM FF behavior byU& A model.

Fig. 4. Prediction ofηγ andη′γ transition EM FFs behavior byU& A model.

qs
in = 5.5210± 0.0084;qvin = 5.61220± 0.1414;aω = 0.0063± 0.0013;

aρ = 0.0212± 0.0006;aφ = −.0004± 0.0001;χ2/nd f = 121/75= 1.61
for η: see Fig.4
qs

in = 6.7104± 0.0190;qvin = 5.5006± 0.0632;aω = 0.0002± 0.0014;
aρ = 0.0250± 0.0013;aφ = −.0020± 0.0003;χ2/nd f = 52/52= 1.00

for η′: see Fig.4
qs

in = 5.5366± 0.0891;qvin = 7.7554± 0.0158;aω = −.1134± 0.0078;
aρ = 0.1241± 0.0026;aφ = 0.0098± 0.0091;χ2/nd f = 59/50= 1.18

5 Conclusions

We have investigated EM structure of pseudoscalar mesons to be described by the corresponding EM
FFs. Since there is no possibility to describe the latter in the framework ofQCD, the universalU& A
models have been elaborated.

More or less successful description of all existing data on the whole complete nonet of pseu-
doscalar mesonsπ−, π0, π+, K−, K0, K̄0, K+, η, η′ has been achieved in space-like and time-like
regions simultaneously.
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