Dipole model analysis of $F_2^{c\bar{c}}$ derived from the new D^* data in DIS at HERA

Agnieszka Luszczak
Cracow University of Technology, Poland

Abstract. I analyse the new D^* deep inelastic scattering data from HERA with the help of dipole models. I calculate $F_2^{c\bar{c}}$ from the GBW [1] and BGK [2] saturation models. I compare results with the last values determined by H1 at low Q^2. I find good agreement with the data.

1 Introduction

In the dipole models: GBW and BGK the heavy quark contribution to F_2 was considered in the form of the $c\bar{c}$ pair production. I show results from fits to the last σ_r data from HERA, where charm contribution as $F_2^{c\bar{c}}$ is taken into account. These results depend on the mass of charm quark. The correct treatment of effects related to the charm quark contribution in perturbative QCD calculations, is important for the determination of parton distribution functions (PDFs).

2 Dipole model of DIS

For dipole model description of DIS we use following factorization:

$$
\sigma^{\gamma p} = \frac{4\pi^2\alpha_{em}}{Q^2} F_2 = \sum_f \int d^2r \int_0^1 dz |\psi^\gamma(r,z,Q^2,m_f)|^2 \hat{\sigma}(r,x)
$$

(1)

where dipole cross section is:

$$
\hat{\sigma}(r,x) = \sigma_0 \left(1 - \exp\{-\hat{r}^2\}\right), \quad \hat{r} = r/R_s(x).
$$

(2)

2.1 Dipole cross section with GBW parametrization

GBW (Golec-Biernat, Wüsthoff) parametrization:

$$
\hat{\sigma}(r,x) = \sigma_0 \left(1 - \exp\{-r^2/R_s^2\}\right), \quad R_s^2 = 4 \cdot (x/x_0)^{\lambda} \text{ GeV}^2.
$$

(3)

The dipole scattering amplitude in such a case reads:

$$
\hat{N}(r,b,x) = \theta(b_0 - b) \left(1 - \exp\{-r^2/R_s^2\}\right)
$$

(4)

\[a\] e-mail: agnieszka.luszczak@gmail.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
where:

\[
\hat{\sigma}(r, x) = 2 \int d^2 b \tilde{N}(r, b, x).
\] (5)

Parameters \(b_0, x_0, \) and \(\lambda\) are from fits of \(\tilde{N}\) to \(F_2\) data:

\[
\lambda = 0.288, \quad x_0 = 4 \cdot 10^{-5}, \quad 2\pi b_0^2 = \sigma_0 = 29 \text{ mb}.
\] (6)

2.2 Dipole cross section with BGK parametrization

BGK (Bartels-Golec-Kowalski) parametrization:

\[
\hat{\sigma}(r, x) = \sigma_0 \left\{ 1 - \exp \left[-\pi r^2 \alpha_s(\mu^2)xg(x, \mu^2)/(3\sigma_0) \right] \right\}.
\] (7)

\(R_s^2\) : from GBW dipole model is replacing by a gluon density with explicit DGLAP evolution

\[
\mu^2 = C/r^2 + \mu_0^2 : \text{is the scale of the gluon density}
\]

Gluon density is evolved according to the (LO) DGLAP equation:

\[
xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1 - x)^{C_g}.
\] (8)

2.3 Charm structure functions in dipole models

Standard dipole model formula with \(m_c = 1.4\) GeV and \(e_c = 2/3\) is:

\[
F_T^{(\sigma_c)} = \frac{3Q^4e_c^2}{64\pi^4} \int_{z_c}^{1^{1/2}} dz z(1-z) \times \left\{ [z^2 + (1-z)^2] Q_c^2 \phi_T^2 + m_c^2 \phi_3^2 \right\}
\] (9)

with \(z_c = (1 - \sqrt{1 - 4m_c^2/M^2})/2\).

For the heavy quark contributions we modified \(x\) in \(\hat{\sigma}(r, x)\):

\[
x \rightarrow x(1 + \frac{4m_f^2}{Q^2}) = \frac{Q^2 + 4m_f^2}{Q^2 + W^2}.
\] (10)

3 Results of the Fits

In this section I show dipole model BGK fit for reduced cross section: \(\sigma_r\) with quark masses: \(m_{ch} = 1.4\) GeV, \(m_{ud} = 0.03\) GeV for the energy: \(E = 460, 575\) and \(920\) GeV in Table 1.

In Table 2 I show charm fit for \(F_2^{\sigma_c}\) function with \(m_{ch} = 1.4\) GeV and \(m_{ud} = 0.03\) GeV.

Table 1. Fit parameters from BGK dipole model to H1 and ZEUS data [4].

<table>
<thead>
<tr>
<th>No</th>
<th>Data</th>
<th>(Q^2)</th>
<th>Npoints</th>
<th>(\chi^2)</th>
<th>(A_g)</th>
<th>(\lambda_g)</th>
<th>(\mu_0)</th>
<th>(\chi^2/N\text{points})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H1 and ZEUS</td>
<td>(Q^2 \geq 0.40)</td>
<td>456</td>
<td>628.94</td>
<td>2.795</td>
<td>-0.017</td>
<td>1.108</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>H1 and ZEUS</td>
<td>(Q^2 \geq 1.5)</td>
<td>402</td>
<td>401.36</td>
<td>2.281</td>
<td>0.065</td>
<td>1.723</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>H1 and ZEUS</td>
<td>(Q^2 \geq 3.5)</td>
<td>356</td>
<td>344.27</td>
<td>2.175</td>
<td>0.086</td>
<td>1.994</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>H1 and ZEUS</td>
<td>(Q^2 \geq 8.5)</td>
<td>287</td>
<td>229.76</td>
<td>2.167</td>
<td>0.084</td>
<td>1.944</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Table 2. Charm fit for $F_2^{c\bar{c}}$ function, $m_{ch} = 1.4$ GeV, $m_{ud} = 0.03$ GeV.

<table>
<thead>
<tr>
<th>No</th>
<th>Data</th>
<th>Q^2</th>
<th>Npoints</th>
<th>χ^2</th>
<th>A_g</th>
<th>λ_g</th>
<th>μ_0</th>
<th>$\chi^2/Npoints$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H1 and ZEUS</td>
<td>$Q^2 \geq 2.5$</td>
<td>41</td>
<td>32.36</td>
<td>4.917</td>
<td>-0.349</td>
<td>0.415</td>
<td>0.79</td>
</tr>
</tbody>
</table>

4 Predictions for $F_2^{c\bar{c}}$ from BGK dipole model

![Diagram of $F_2^{c\bar{c}}$ prediction from BGK dipole model]

Fig. 1. Charm fit for $F_2^{c\bar{c}}$ function from Table 2.

5 Summary
I calculate $F_2^{c\bar{c}}$ from the GBW [1] and BGK [2] saturation model. I compare results with the last values determined by H1 and ZEUS [4] at low Q^2. I find good agreement with the data. The mass effects are important for the determination of parton distribution functions (PDFs).

References