Modeling AGN outbursts from supermassive black hole binaries

T. Tanaka
Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85741 Garching bei Muenchen, Germany

Abstract. When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs) should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN). The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humbly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

1. INTRODUCTION

Given that galaxies assemble hierarchically and that nearly every massive galaxy appears to host a supermassive black hole (SMBH) in its nucleus [1,2], it is inevitable that they go through stages in which they harbor multiple SMBHs. Dissipation of gravitational energy via dynamical friction should form bound SMBH binaries, which become increasingly compact as they interact with ambient stars and gas before inspiraling and coalescing by emitting gravitational radiation [3]. Such binaries should be common throughout cosmic time [4–8] and are expected to be strong sources of gravitational radiation during inspiral and merger. Because galaxy mergers are also thought to trigger active galactic nuclei (AGN) and quasars [9–11], it is plausible that SMBH binaries tend to reside in gas-rich environments and power nuclear activity.

The possibility that SMBH binaries can emit unique, “smoking gun” electromagnetic signatures has attracted attention because of the immense scientific potential of observing such signatures concomitantly with the gravitational wave signatures [12–16]. However, conspicuous, coherent emission from SMBH binaries could also be detected by electromagnetic searches alone (as with the candidate binary OI 287 [17]), either by targeted monitoring of AGN [18,19] or in wide-field, high-cadence surveys [20,21].

A particularly promising mechanism for producing such signatures is the geometry of a coplanar, circumbinary accretion disk, namely the presence of an annular gap or a central quasicircular cavity. Here, I discuss three types of observable features that may be produced by a central disk cavity: a softer thermal spectrum and less bolometric output [27,28]; §

The outflow is driven by radiative pressure, which is more violent in the cavity as the accretion rate is not Eddington-limited in the usual sense. The outer accretion rate can be many times the candidate binary OI 287 (17), either by targeted monitoring of AGN [18,19] or in wide-field, high-cadence surveys [20,21].

A particularly promising mechanism for producing such signatures is the geometry of a coplanar, circumbinary accretion disk, namely the presence of an annular gap or a central quasicircular cavity. Here, I discuss three types of observable features that may be produced by a central disk cavity: a softer thermal spectrum featuring intrinsically dim UV and X-ray emission (§2); the evolution of this disk spectrum during and after the merger of the binary (§3); and transient, quasiperiodic flares fueled by inward leakage of circumbinary gas into the cavity and onto one of the SMBHs (§4).

2. CIRCUMBINARY CA VITY

The binary’s tidal torques inject angular momentum into the surrounding accretion disk, so that the infall of the outer material is inhibited, creating an annular gap at a radius approximately twice the semimajor axis [23]. Because the gas inside the annulus is accreted much more rapidly than the binary evolves toward merger, the gap should evolve into a central, quasicircular cavity [25]; enough gas may leak into the cavity to form small accretion disks around one or both SMBHs [26].

In either case, because the innermost regions of accretion disks are where the highest-energy photons and the vast majority of the emergent flux is generated (independently of the disk viscosity mechanism), the presence of a central cavity leads to the disk having a softer spectrum and less bolometric output [27,28].

The presence of a cavity has two additional implications for the accretion rate of the circumbinary disk. First, the weakened emission mentioned above means that the accretion rate is not Eddington-limited in the usual sense. The outer accretion rate can be many times the fiducial “critical” value for a disk around a single SMBH, without producing sufficient radiation pressure to drive significant mass loss. Second, the inward mass flux at large radii is generally higher than the mass leakage rate into the cavity (see §4 below). As such, the disk is not steady-state, with mass “piling up” just outside the cavity [29,30].

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

a e-mail: taka@mpa-garching.mpg.de

1 For an overview of proposed electromagnetic signatures and their triggering mechanisms and timescales, see [22].

2 See [24] for detailed considerations of the conditions for gap formation (and non-formation).
Figure 1. Thermal blackbody disk spectra, from top to bottom:
a standard thin disk [32] around a single SMBH of mass $10^7 M_\odot$
and an accretion corresponding to 30% of the Eddington limit
and a radiative efficiency $\epsilon = 0.1$; the same disk around a binary
with mass $10^7 M_\odot$, with the density profile truncated at twice
the semimajor axis corresponding to a binary orbital period $P_{\text{bin}} = 1$ yr; same, but with $P_{\text{bin}} = 10$ yr. The disk is assumed to
be marginally gravitationally stable at large radii [33].

If the body emits as a blackbody, the color temperature T_{ph} at a given radius is given by

$$\sigma_{\text{SB}} T_{\text{ph}}^4 \approx 9 \frac{\dot{M} \Omega^2}{\nu}.$$ \hspace{1cm} (1)

where σ_{SB} is the Stefan-Boltzmann constant, \dot{M} is the
local mass flux and Ω is the angular velocity of the
gas (approximately Keplerian; see, e.g. [31]). Then, a
circumbinary disk around a binary with period P will be
intrinsically dim at frequencies above

$$\nu_{\text{dim}} \sim 10^{14} \left(\frac{M}{10^7 M_\odot} \right)^{-1/4} \left(\frac{P}{\text{yr}} \right)^{-1/2} \text{Hz},$$ \hspace{1cm} (2)

for a surface density corresponding roughly to 30% of the
critical accretion rate onto a single SMBH. Figure 1 shows
examples of circumbinary disk spectra truncated at twice
the semimajor axis, as compared with a standard thin disk
with a single central SMBH of the same mass and surface
density normalization. The aforementioned mass “pile-up”
(whose effects are minor) is neglected in the figure, as is the
possible presence of a small accretion disk around either
SMBH; the latter would show up as a bump on the high-
frequency end of the thermal spectrum [27].

3. AFTERGLOW OF BINARY MERGER

For most of the lifetime of the disk-binary system, the
binary evolves sufficiently slowly so that the disk co-
evolves with it in a quasi-steady manner, maintaining the
radial size of the cavity at $\sim 2a$ [29,30,34]. However,
at binary semimajor axis values of $a \sim 100GM/c^2$,
the binary begins to inspiral through gravitational-wave
emission faster than the circumbinary disk can viscously
spread [25,35,36]. The disk is left “frozen” as the binary
merges inside the cavity, emitting a burst of gravitational
waves. The disk — no longer inhibited by the binary’s
tidal torques — fills the cavity after a delay, evolving from
a dim, spectrally soft source to a luminous disk whose
thermal emission is dominated by UV and soft X-ray
frequencies [25,36,37]. For SMBH binaries in the mass
range $M \sim 10^6 M_\odot$, the afterglow evolves on timescales
of years (Fig. 2).

The local mass flux of the gas,

$$\dot{M}(R, t) = 3 \pi \nu \Sigma \left(1 + \frac{\text{d} \ln \nu \Sigma}{\text{d} \ln R} \right),$$ \hspace{1cm} (3)

can become very high as it fills the cavity, because of
steep density and temperature gradients that were
previously maintained by the binary torques; note that the
gradient term inside the parentheses is zero in steady-state
solutions. The mass fluxes are likely to be well above
the critical rate, especially given the aforementioned point (\S2)
that the diminished luminosity of the inner disk allows for
very high surface densities. That is, the innermost disk may
satisfy

$$\dot{M} > 3 \pi \nu \Sigma \gg \frac{L_{\text{Edd}}}{c^2}$$ \hspace{1cm} (4)

as it fills the cavity, with strong advective energy fluxes as
in the slim-disk class of solutions of luminous accretion
flows [38]. The gas may launch powerful outflows or a jet
as it reaches the central SMBH [36].

Observing the source with gravitational as well as
electromagnetic radiation would maximize the scientific
yield. The position of the merging binary on the sky can

Figure 2. The spectral evolution of the circumbinary disk as it
spreads viscously before and after the merger of an equal-mass
binary with total mass $10^6 M_\odot$. From left to right: to 3 years before
the merger; and 1 month, 1 year, 2 years, 5 years, 9 years, 20 years
and 120 years after the merger. Adapted from [36].
be localized with a gravitational-wave detector such as LISA, and the spectral evolution of the AGN emission can be detected by follow-up monitoring. The monotonic brightening and spectral hardening of the source is likely to stand out, since (i) AGN typically exhibit little correlation between flux and spectral hardness in their variability [39], and (ii) X-ray-dim AGN are rare (perhaps less than 2% of the optically bright population [40,41]). Therefore, these afterglows could be discovered serendipitously by wide-field X-ray surveys that revisit the same patch of the sky, such as eROSITA – and, if some of the energy is reprocessed into the optical or near-infrared, then by LSST [21].

4. TRANSIENT OUTBURSTS

The last point is an interesting one, because the fraction of galaxies hosting nuclear SMBH binaries with subparsec separations is poorly constrained by observations. In principle, the fraction can be quite large, because the typical timescales it takes for binaries to reach the final, gravitational wave-emitting stage of evolution may be very long (“the final parsec problem”; [42]). SMBH binaries should most commonly have separations where their evolution is slowest; theoretical considerations suggest $\sim 10^{-7} - 10^{-1}$ pc [3,6], corresponding to orbital periods of years to centuries.

At these separations, the circumbinary disk (whose presence may be a prerequisite for some binaries to overcome the “final parsec” barrier), perhaps in a marginally gravitational stable state [33], would have a large cavity that prevents thermal emission above optical frequencies (eq. 2). That is, even if a circumbinary disk is present, it may not easily be detectable as an AGN.

Gas from the disk leaks into the cavity quasi-periodically in the form of discrete streams on nearly radial orbits, modulated by the binary’s tidal torques [43]. The mass contained in an individual stream should be of order

$$M_{\text{stream}} \sim f_{\text{leak}} \dot{M} P \sim 2.5 f_{\text{leak}} \frac{P}{0.1 \text{ yr}} \frac{\dot{M}}{10^5 M_\odot \text{ yr}^{-1}} \text{M}_\odot \approx 0.05 M_\odot \text{ yr}^{-1},$$

where f_{leak} — found to be of order 1 – 10% in numerical simulations [31,44] — is the fraction of the mass supply rate in the outer disk that enters the cavity and n is the ratio of the mass surface density just outside the cavity to the critical value in a steady-state disk around a single SMBH.

After the stream passes through pericenter near one of the SMBHs, it will self-intersect and shock. The bound material will circularize into a hot, optically thick annulus and viscously spread. The gas will begin to accrete in a slim-disk configuration (cf. [45]) before it can cool radiatively, producing transient AGN-like emission in optical, UV and X-rays.

Figure 3 shows the bolometric, u-band (365 nm) and FUV (1500 Å; dashed) light curves of a stream of circumbinary gas that circularizes and shock-heats before being accreted by the secondary SMBH ($2 \times 10^6 M_\odot$). The bolometric light curve decays at late times with a power-law index $-4/3$. The binary in this model would produce a flare like this one every ≈ 30 yr.

with mass $2 \times 10^6 M_\odot$, and evolved using the exact disk-evolution solutions derived in [46]. The annulus is shock-heated so that its thermal energy is comparable to the Keplerian kinetic energy (satisfied if the shocks convert the gas orbits from nearly radial ones to nearly circular ones). The bolometric luminosity decays at late times as $d \log L/d \log t = -4/3$, but the decay rates in individual photometric bands deviate from this power law.

If the above scenario is realized in nature, then accreting SMBH binaries can produce optical, UV and X-ray flares in otherwise quiescent galactic nuclei at cadences of years to centuries. Such flares may be mistaken for tidal disruptions of stars, given that the two phenomena are powered by the same underlying astrophysical process — i.e., the transient accretion of $\sim 1 M_\odot$ of matter by a SMBH — and share similarities in emission energies and decay. However, a significant distinction is that the transient outbursts from leaked circumbinary gas would not be limited by SMBH mass in the way tidal disruption events are [47].

Because the event rate per galaxy is several orders of magnitude higher than the expected rate of tidal disruption events in galaxies without binary SMBHs ($10^{-5} - 10^{-4}$ per year per galaxy; e.g. [48]), if even a fraction of one percent of galaxies host accreting, hard SMBH binaries, the type of flares discussed here could be detected in significant numbers in surveys searching for tidal disruption events.

5. CONCLUSIONS

A central SMBH binary engine is capable of eliciting coherent AGN signatures in ways that a single SMBH engine cannot. The alteration of the central accretion
References

[22] J. D. Schnittman, Class. Quantum Gravity, 28, 094021 (2011), 1010.3250
[34] Y. T. Liu, S. L. Shapiro, PRD, 82, 123011 (2010), 1101.0002
[37] S. L. Shapiro, PRD, 81, 024019 (2010), 0912.2345