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Abstract. The intrinsic energy partition between two complementary fission fragments
is investigated microscopically. The intrinsic excitation energy of fission fragments is dy-
namically evaluated in terms of the time-dependent pairing equations. These equations are
corroborated with two conditions. One of them fixes the number of particles and the other
separates the pairing active spaces associated to the two fragments in the vicinity of the
scission configuration. The excitation energy in a wide distribution of fission fragments is
calculated for the234U parent nucleus.

1 Introduction

Under the action of a mutual Coulomb repulsion, at scission the fission fragments are accelerated in op-
posite directions. These fragments are highly excited. The maximal kinetic energy issued in the process
amounts to theQ-value in the case of cold fission. The fragments decay on their ground states mainly
by evaporation of neutrons and by radiation emission. It is known that the motion of any physical
system is governed by conservative forces and by frictional ones that give rise to dissipation. Conse-
quently, the excitation energy of the fragments must depend on the dynamics of the nuclear system in
its path to scission. In this contribution the intrinsic energy partition between two complementary fis-
sion fragments is investigated microscopically in terms of the time-dependent pairing equations [1,2].
These equations are corroborated with two conditions. One of them fixes the number of particles and
the other separates the pairing active spaces associated to the two fragments in the vicinity of the scis-
sion configuration. The fission path is obtained in the frame of the macroscopic-microscopic model.
The single-particle level schemes are obtained within the two-center Woods-Saxon shell model. It is
shown that the available intrinsic dissipated energy is not shared proportionally to the masses of the
two fission fragments. If the heavy fragment possesses nucleon numbers close to the magic ones, the
accumulated intrinsic excitation energy is lower than that of the light fragment.

Recently, this problem was intensively investigated within a wide range of methods, including
Hartree-Fock theories [3], the statistical mechanics [4,5], the phenomenological point by point model
[6,7], empirical evaluations [8], or the shell model in the sudden approximation [9].

2 Model

First of all, the main steps in deriving the microscopic equations of motion constrained by the projec-
tions of number of particles are presented. The starting point of the model is the energy functional

L = 〈ϕ | H − i~
∂

∂t
− λ(N1N̂2 − N2N̂1) | ϕ〉 (1)
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where
H(t) =

∑

k>0

ǫk(a
+
k ak + a+

k̄
ak̄) −G

∑

k,i>0

a+k a+
k̄
aiaī (2)

is the Hamiltonian with pairing residual interactions,ǫk being single particle energies,

| ϕ〉 =
∑

k

(

uk + vka+k a+
k̄

)

| 0〉 (3)

is the Bogoliubov wave function with BCS occupationvk and vacancyuk amplitudes.λ represents a
Lagrange multiplier and

N̂1 =
∑

k1

(ak1a
+
k1
+ ak̄1

a+
k̄1

),

N̂2 =
∑

k2

(ak2a
+
k2
+ ak̄2

a+
k̄2

) (4)

are operators for the number of particles in the pairing active level space pertaining to the nucleiA1 and
A2, respectively. The summation indexk, k1 andk2 run over all states considered in the pairing active
space, the states of the fragment one, and the those of the fragments two in the same space, respectively.
N1 andN2 are the correspondent number of particles belonging to the two fission fragments. Obviously,
the following identity

〈ϕ | (N1N̂2 − N2N̂1) | ϕ〉 = 0 (5)

can be used to fix the number of particleN1 andN2 in the two fission fragments. The condition (5)
is added to the energy functional (1) by mean of the Lagrange multiplier as an implicit condition.
Therefore, the equation (1) is subject to a supplementary condition that project the number of particles
onto the two fragments. The next equations are obtained for the TDPE:

i~ρ̇k1 = κk1∆
∗
1 − κ

∗
k1
∆1,

i~ρ̇k2 = κk2∆
∗
2 − κ

∗
k2
∆2,

i~κ̇k1 =
(

2ρk1 − 1
)

∆1 − 2κk1

(

ǫk1 + λN2
)

, (6)

i~κ̇k2 =
(

2ρk2 − 1
)

∆2 − 2κk2

(

ǫk2 − λN1
)

whereρk =| vk |
2 are occupation probabilities,κk = u∗kvk are pairing moment components, and∆ =

G
∑

k κk is the pairing gap.∆1 = G1
∑

k1
κk1 + G12

∑

k2
κk2 and∆2 = G12

∑

k1
κk1 + G2

∑

k2
κk2 are the

gaps for the two fragments. It must be noticed that ifG12=0, then we obtain two sets of non coupled
equations, one set for each fission fragment [1]. This last condition separates the pairing active space
into two sub-spaces. A particular form of these equations was deduced for the first time in Refs. [10,
11]. They were developed in the last years [12] to take into account the Landau-Zener effect [13]. the
pair breaking mechanism [14], and the dissipation in the effective mass [15].

These TDPE are solutions of an optimization problem and can offer a measure of the average
dissipated energy at a given deformation during the disintegration process provided that the velocity
of the deformations are known. The difference between the total energy valueE obtained within the
TDPE andE0 given by the static BCS-equations represents an approximate measure for the dissipation
E∗:

E∗ = E − E0. (7)

E is expressed simply in terms ofρk andκk

E = 2
∑

k

ǫkρk −G |
∑

k

κk |
2 −G

∑

k

ρ2
k , (8)

andE0 corresponds to the valuesρ0
k andκ0k associated to the lower energy state, that is, obtained from

BCS equations. This definition was introduced in Ref. [10] where the nuclear viscosity coefficient
is determined by comparing microscopic results with hydrodynamic ones. So, the TDPE provide the
values ofρk andκk in each fragment. By calculating the BCS solutions of the same fragment in the
average deformation, in the corresponding pairing active space, the intrinsic excitation is obtained with
formula (7).
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3 Results

The low energy fission of234U will be investigated. In the Macroscopic-Microscopic Method (MMM),
the whole system is characterized by some collective coordinates that vary in time leading to a split
of the nucleus into two fragments of massesA1 andA2. The macroscopic-microscopic model provides
a single particle potential in which the nucleons move independently. As mentioned in Ref. [10],
such a description is within the spirit of the more rigorous Hartree-Fock method which defines the
potential in terms of the instantaneous positions of the nucleons. The basic ingredient of the MMM is
the nuclear shape parametrization. An axial symmetric nuclear shape is obtained by smoothly joining
two spheroids of semi-axisai andbi (i=1,2) with a neck surface generated by the rotation of an arc of
circle. By imposing the condition of volume conservation we are left with five independent generalized
coordinates that are associated to five degrees of freedom: the elongationR denoting the distance
between the centers of the fragments; the necking parameterC = S/R3 related to the curvature of the
neck; the eccentricitiesǫi = [1 − (bi/ai)2]1/2 if ai ≥ bi (or ǫi = −[1 − (ai/bi)2]1/2 if ai < bi) associated
to deformations of the two fragments (ai and bi denoting the semi-axis) and the mass asymmetry
parameterη = a1/a2 given by the ratio of the major semi-axis. This parametrization was widely
used previously in the calculation concerning cluster decay [17–20] or barriers for fission [21–23]. A
Woods-Saxon two center shell model [13] compatible with this nuclear shape parametrization is used
to compute the single particle levels and to disentangle the wave functions before that the scission is
reached [1]. Using the minimal action principle a trajectory in the configuration space beginning with
the parent ground state and ending in the exit point of the barrier is determined. The fission barrier
along the minimal action path is presented in Fig. 1. A method developped in Ref. [21] is used to find
the barriers associated to the most favorable partitions in the mass distribution. These partitions are
selected from the maximal yields given in Ref. [24].

The ingredients needed to obtain the dissipated energy are the single particle energies and the
internuclear velocity. These energies are calculated within the Woods-Saxon two center model and the
internuclear is considered to be 106 m/s. This velocity gives a tunneling time of 10−21 s. A similar value
resorts in calculations devoted to alpha [25] and cluster decays [26–28]. This internuclear velocity is
in agreement with the results obtained in Ref. [29,30]. In the previous reference a parent metastable
state is generated and a tunneling time of the order of (10−21-10−22) s is computed.

It is not possible to extract directly the energy partition from experimental data. Nevertheless, the
main de-excitation process is the neutron evaporation. Therefore, indirect information can be obtained
from neutron multiplicities, for which accurate results are available [31]. The excitation energy of each
fragment is computed within the relation (7). The results are plotted in Fig. 2. Several experimental
features are reproduced by the theoretical data. The deeply minimum in the neutron multiplicity occurs
close to the mass of the doubly magic nucleus132Sn. A maximal value of the neutron multiplicity is
obtained for the mass 116, that is in the symmetric fission region. In general, the excitation energy of
the light fragment is larger than that of the heavy one.

We can compare also the behavior of the average neutron multiplicity with the sum of total exci-
tation energies of partners. The average neutron multiplicity is defined as the sum of neutrons from
both fragments [31]. The minimal value of the average neutron multiplicity appears around 130 u.
This fact is reproduced by theoretical data. Our results plotted with a thick dashed line in Fig. 2 give
a minimum of the excitation. An enhanced neutron emission is obtained in the symmetric fission and
the very asymmetric region. Between these extreme, the total neutron emission shows a structure with
a maximal value aroundA1=140. These behavior are also exhibited by the total excitation energy [31].
From another respect, it must be mentioned that the excitation energy exhibits a structure with strong
fluctuations, especially forA2 < 82. A possible explanation for this peculiar aspect could be related to
the existence of another fission path associated to large mass asymmetries. Therefore, the deformations
and the dynamics assumed in this region could be not realistic.

Excepting the strong fluctuations related to the large mass asymmetries, the results agree qualita-
tively well with the data that correspond to neutron multiplicities. It is a first microscopic description
of the intrinsic energy partition in a wide range of fission channels that succeed to reproduce the main
behavior of the neutron multiplicities.
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Fig. 1. 234U fission barrierV for a final partition102Zr+132Te determined along the minimal action trajectory. Some
particular shapes related to the ground state, the extremes of the barrier, the exit point and the scission point are
inserted in the plot. The distances for the elongationR that characterizes the shapes are 4.17, 7.7, 10.43, 12.64,
15.53, 17.53 and 20.2 fm.

Fig. 2. The total excitation energiesE∗ of the fission fragments are plotted versus their masses with a thick full
line. A thin full line is used for the deformation energy, a thin dashed line gives the neutron dissipated energy
while the thin dot dashed line gives the dissipated energy for the proton space. The sum of excitation energies of
the fission partners is plotted as function of the heavy fragment mass with a thick dashed line.
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