Stress Corrosion Cracking of Nickel Base Alloys in PWR Primary Water
Stress Corrosion Cracking of Nickel Base Alloys in PWR Primary Water

Catherine GUERRÉ1, Elizabeth CHAUMUN1, Jérôme CRÉPIN2, Ian de CURIÈRES3, Cécilie DUHAMEL2, Eva HÉRIPRE4, Emmanuel HERMS1, Pierre LAGHOUTARIS1, Régine MOLINS2, Mohamed SENNOUR2, François VAILLANT5

1 CEA-DEN-DPC, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, SCCME (Saclay, France)
2 MINES ParisTech, Centre des matériaux, CNRS UMR 7633 (Evry, France)
3 Institute for Radiological Protection and Nuclear Safety (IRSN), DSR/SAMS (Fontenay-aux-Roses, France)
4 Laboratoire de Mécanique des Solides, Ecole Polytechnique (Palaiseau, France)
5 EDF R&D – MMC (Moret-sur-Loing, France)

Stress corrosion cracking (SCC) of nickel base alloys and associated weld metals in primary water is one of the major concerns for pressurized water reactors (PWR). Since the 90’s, highly cold-worked stainless steels (non-sensitized) were also found to be susceptible to SCC in PWR primary water ([1], [2], [3]). In the context of the life extension of pressurized water reactors, laboratory studies are performed in order to evaluate the SCC behaviour of components made of nickel base alloys and of stainless steels. Some exemples of these laboratory studies performed at CEA will be given in the talk. This presentation deals with both initiation and propagation of stress corrosion cracks.

The aims of these studies is, on one hand, to obtain more data regarding initiation time or crack growth rate and, one the other hand, to improve our knowledge of the SCC mechanisms. The aim of these approaches is to model SCC and to predict components life duration. Crack growth rate (CGR) tests on Alloy 82 with and without post weld heat treatment are performed in PWR primary water (Figure 1). The heat treatment seems to be highly beneficial by decreasing the CGR. This result could be explained by the effect of thermal treatment on the grain boundary nanoscopic precipitation in Alloy 82 [4].

Fig. 1: Fracture surface of an Alloy 82 CT specimen tested 8064 hr at 325°C in simulated PWR primary water, view of an isolated intergranular SCC crack (Scanning Electron Microscopy).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The susceptibility to SCC of cold worked austenitic stainless steels is also studied. It is shown that for a given cold-working procedure, SCC susceptibility increases with increasing cold-work ([2], [5]). Despite the fact that the SCC behaviour of Alloy 600 has been widely studied for many years, recent laboratory experiments and analysis ([6], [7], [8]) showed that oxygen diffusion is not a rate-limiting step in the SCC mechanism and that chromium diffusion in the bulk close the crack tip could be a key parameter.

References

Stress corrosion cracking of nickel base alloys in PWR primary water

C. Guerre, CEA Saclay

E. Chaumun, E. Herms, P. Laghoutaris, CEA Saclay
J. Crépin, C. Duhamel, R. Molins, M. Sennour, Mines Paristech
E. Héripré, LMS, Ecole Polytechnique
F. Vaillant, EDF R&D
I. de Curières, IRSN

Alloy 600, heat NX2650
U-bend specimen
1538 hr in nominal PWR primary water at 330°C
Stress Corrosion Cracking (SCC)

Cracking of a material induced from the combined influence of a tensile stress and an environment.

Ni base alloys and their weld metals:
- Alloy 600: Ni15CrFe
- Alloy 690: Ni30CrFe
- Alloy 82 (weld metal): Ni20CrFe

Primary water (PWR):
- T = 275°C – 345°C
- P = 150 bar
- Water with boron and lithium
- pH = 7.2
Stages of stress corrosion cracking

1. Initial condition
   - Before exposure, as fabricated, as supplied, surface preparation by mechanical and chemical treatments
   - Base metal

2. Precursor
   - Defines necessary condition for initiation to occur, but not part of SCC

3. Incubation
   - First SCC segment but not generally visible penetration

4. Proto-cracks
   - About 1/100th to 1/1000th rate of propagation; part of SCC and visible in optical microscopy
   - Transition from initiation to propagation: 0.1-1.0 μm

5. Environment at crack tip
   - Metal at crack tip
     - Stress
     - Strain
     - Dislocations
     - Metal pulling apart

6. Environment (Rapid Growth)

CONTEXT : SCC

Two modes of propagation

Intergranular cracks

Transgranular cracks

Stress

Grain boundary
SCC OF ALLOY 600 IN PWR PRIMARY WATER
Context and objective

- Many laboratory studies have been performed (for more than 30 years) and dealt with the influence of:
  - Microstructural parameters: chemical composition, precipitation, carbon content, ...
  - Environmental parameters: temperature, hydrogen partial pressure, pH...
  - Mechanical parameters: tensile stress, strain path, ...

- But the assumed mechanism are still not well known...

- Need for a predictive model in the frame of life extension of PWRs...
  - for Alloy 690, assumed not to be susceptible to SCC in nominal PWR primary water: to better understand the mechanism for Alloy 600 will help us to better predict the long term behaviour of Alloy 690
  - for nickel base weld metals: more recent in-service cases and less laboratory studies
Characterization of the crack by high resolution TEM analysis:

- Cr-rich oxide at the tip.
- Chromium depletion (Ni enrichment) ahead of the crack tip and on one side of the crack (or IGA)
- Asymmetric aspect of the SCC crack.

EDX analysis of an IGA tip
Characterization of the oxides in SCC cracks

According to thermodynamics calculations, it implies an increasing oxidizing power in the crack.

Asymmetric aspect of the Cr depletion (or Ni enrichment)

Advance TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment, M. Sennour, P. Laghoutaris, C. Guerre, R. Molins, JNM 393 (2009) 254-266
Modelling of SCC of Alloy 600 ([Laghoutaris2009])

- NiO structure polycristals
- NiO
- Ni(Fe,Cr)$_2$O$_4$
- Cr depleted area
- Cr$_2$O$_3$
- GB

This mechanism is based:
- on a selective oxidation of chromium,
- an asymmetric aspect of the crack tip (oxidation and chromium depletion) controlled by the local defects density.
Alloy 600

Solution annealed (SA)

1050°C – 1h
water quenching

Strong intergranular carbide precipitation

Heat WF675
Susceptible to SCC

STM-DF

Carbides (Cr$_7$C$_3$)
SCC OF ALLOY 600 IN PWR PRIMARY WATER

Solution – annealed (no IG carbide)

Nano-SIMS analysis on intergranular attack formed during exposure in water.

Conditions:
- 1340 hr in nominal primary water at 325°C
- 67 hr in water containing tracers ($^{18}$O) at 325°C

$^{18}$O is located at the tip of the IG penetration and in the outer part of the oxide surface layer.

$^{18}$O transport during 67 hr up to the tip of the oxidized grain boundary.

--> long and thin IGA

Nano-SIMS analysis were performed by Nathalie Vallé, Public research centre Gabriel Lippmann, Material analysis department.
IG carbide precipitation

Nano-SIMS analysis

Conditions:
- 1340 hr in nominal primary water at 325°C
- 67 hr in water containing tracers (\(^{18}\text{O}\)) at 325°C

\(\frac{^{18}\text{O}}{^{16}\text{O}}\)

\(\frac{^{18}\text{O}}{^{16}\text{O}}\)

\(\frac{^{12}\text{C}_2}{^{16}\text{O}}\)

\(\frac{^{18}\text{O}}{^{16}\text{O}}\)

\(\frac{^{18}\text{O}}{^{16}\text{O}}\)
Conclusion and perspectives

- **Oxygen transport** through the surface oxide layer and in the crack is not a rate-controlling step.

- SCC cracks and intergranular attacks are asymmetric (Alloy 600)
  - Chromium depletion is observed on one side of the crack or of the IGA:
    - in the grain containing more defects?
    - depending on the strain?
    - chromium diffusion is accelerated by strain?

- Influence of intergranular carbides
  - IGA is shorter and larger
    - intergranular carbides could act as a barrier to the formation and growth of the intergranular attack (and therefore for crack initiation)
    - slower oxidation kinetics of the carbides compared to the alloy?
    - same effect with Cr$_7$C$_3$ and Cr$_{23}$C$_6$ ([Payne and Mc Intyre 87]?}

- Not all grain boundaries are oxidized.
SCC OF ALLOY 82 IN PWR PRIMARY WATER
Alloy 82 butt welds

- Alloy 82 is a weld metal deposited by arc welding (GTAW or FCAW)
- Two metallurgical states: as-welded or heat-treated (7 hr at 600°C)
- Chemical composition

<table>
<thead>
<tr>
<th>Weight %</th>
<th>C</th>
<th>S</th>
<th>Si</th>
<th>Mn</th>
<th>Ni</th>
<th>Fe</th>
<th>Cu</th>
<th>Cr</th>
<th>Nb</th>
<th>Ti</th>
<th>P</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC-M</td>
<td>&lt;0.1</td>
<td>&lt;0.015</td>
<td>&lt;0.5</td>
<td>2.5/3.67</td>
<td>&lt;3</td>
<td>&lt;0.5</td>
<td>18/22</td>
<td>2/3</td>
<td>&lt;0.75</td>
<td>&lt;0.03</td>
<td>&lt;0.1</td>
<td></td>
</tr>
</tbody>
</table>

SCC OF ALLOY 82 IN PWR PRIMARY WATER
Microstructure

- Columnar grains made of several slightly disoriented dendrites.
- One grain can cross several weld passes.
• More or less elongated grains along the dendrite growth direction, heterogeneous grain size.
• The Representative Elementary Volume (REV) is centimetric.
**SCC OF ALLOY 82 IN PWR PRIMARY WATER**

Crack propagation test

- CT specimen fracture surface analysis
- Intergranular crack path.
- Isolated initiation sites along the crack front and crack branching: induced by the microstructure

**Crack propagation test details:**
- **EP785, as-welded, TS 8064 hr @ 325 °C**
- Nominal PWR primary water
- Max. CGR = 3 mm/year

**Imaging details:**
- **ULTRA 55 - SCCME**
- EHT = 15.00 kV
- Signal A = SE2
- WD = 12.9 mm
- Mag = 76 X
- File Name = Ep785_face B versopp1_18.tif

**Inclusions:**
- Air pre-cracking
- Fatigue crack growth
SCC OF ALLOY 82 IN PWR PRIMARY WATER

Crack propagation test

- Maximum Crack Growth Rate: 4 mm/year -> CGR can be very high along susceptible grain boundaries.
- Whereas others grain boundaries can remain unaffected (even if they are highly stress during several thousands hours)

![CT specimen](cea.png)

**a = 3.42 mm**

**da/dt = 1.2 \times 10^{-10} \text{ m/s}**  
**da/dt = 3.8 \text{ mm/year}**

EP840  
AW TS  
8064 hr at 325°C
SCC OF ALLOY 82 IN PWR PRIMARY WATER

Influence of the thermal treatment on CGR

The thermal treatment reduces the susceptibility to SCC crack propagation for Alloy 82.

This thermal treatment was designed to stress relieved components which are welded (and not designed for the weld). All Alloy 82 welds are thermally treated in France.
Influence of the thermal treatment

TEM observations of the GB (thermally treated weld)
- NbC
- Cr$_{23}$C$_6$

(Cr$_{23}$C$_6$ were not observed for as-welded weld)

- The thermal treatment induces the formation of Cr$_{23}$C$_6$.
- It could explain the lower susceptibility to SCC of the heat–treated weld.
- But the influence of the heat-treatment must depend on the Cr content, the carbon content, the welding procedure ....
Influence of the microstructure on the SCC initiation test

U-bend specimen

18 % Cr, as –welded, FCAW

welding direction (L)
SCC OF ALLOY 82 IN PWR PRIMARY WATER

18 % Cr, as –welded, FCAW

- Surfaces of two U-bend specimens (before straining) : not the same microstructure (and therefore grains and grain boundaries at the apex)
- It demonstrates the importance to fully characterize the specimens before the SCC tests.
- Grains are much more elongated and orientated along the dendrite growth direction for the low Cr Alloy (18 % Cr).
-> the welding procedure (welding parameters) must also be taken into consideration.
The objective is to identify the microstructural features that enable SCC initiation in Alloy 82.

- **Microstructure** (EBSD, SEM, ...)
- **Stress corrosion cracking** (Initiation test)
- **Local mechanical behaviour** (local strain field, strain localization, etc...)

**Approach and purpose for crack initiation study (for weld metals)**
CONCLUSION

Stress corrosion cracking of nickel base alloys and of stainless steels is still a major in PWR in the frame of life extension.

New approaches

New experimental tools (nano-SIMS, HRTEM, FEG-SEM and EBSD, …)
- In order to improve our knowledge of mechanism
- To get predictive models that could be applied to susceptible materials but also to assess the susceptibility of others materials (Alloy 690, Alloy 52, …)

In order to take into account specific microstructure (texture) or anisotropic materials
- weld metals with centimetric representative elementary volume – REV
- anisotropic cold-worked materials
- ....
REFERENCE

SCC of Alloy 600


SCC of Alloy 82