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Nonlinear kinetic modeling and simulations of Raman
scattering in a two-dimensional geometry
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Abstract. In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering (SRS)
by the means of envelope equations, whose coefficients have been derived using a mixture of perturbative
and adiabatic calculations. First examples of the numerical resolution of these envelope equations in a
two-dimensional homogeneous plasma are given, and the results are compared against those of particle-in-
cell (PIC) simulations. These preliminary comparisons are encouraging since our envelope code provides
threshold intensities consistent with those of PIC simulations while requiring computational resources
reduced by 4 to 5 orders of magnitude compared to full-kinetic codes.

1. INTRODUCTION

Predicting Raman reflectivity in fusion devices, such as the future laser Mégajoule (LMJ) or the National
Ignition Facility (NIF), is a major issue for inertial confinement fusion, as revealed by recent NIF
campaigns [1], but remains a very difficult task. One difficulty to estimate Raman reflectivity is to
account for the kinetic effects resulting from the nonlinear modification of the electron distribution
function. For small size systems, this may done using full kinetic codes (see for example Ref. [2]).
However, the computational resources required by these codes is huge, and it seems quite unlikely that
a full kinetic simulation of an actual fusion experiment could be carried out in the near future.

In this paper, we present an alternative approach to full kinetic simulations, based on the use of
envelope equations, which do account for nonlinear kinetic effects. The accuracy of our modeling, as
regards the collisionless dissipation of the plasma wave, the nonlinear shift of its frequency, or the
nonlinear variations of its group velocity, has been tested very carefully against results from Valsov
simulations in Refs. [3–5]. Our envelope equations are solved numerically using a C++ code, called
BRAMA, which proved to provide reflectivity levels in very good agreement with those computed
using a Vlasov code in a one-dimensional geometry, as shown in Ref. [6]. In this article, we present
a generalization of our previous equations to a multidimensional geometry, together with preliminary
comparisons between PIC and BRAMA simulation results in two dimensions.

2. THE ENVELOPE EQUATIONS

Our envelope equations are derived under the assumption that all the waves involved in SRS are quasi-
monochromatic. The total electric field is thus given by:

E = Epei�p ux + [Ele
i�l + Ese

i�s ]uy + c.c. , (1)
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where El , Es and Ep are, respectively, the slowly varying amplitude of the laser, scattered and plasma
waves, which are supposed to be real and positive; �l , �s and �p are the phases of these waves and
ux and uy are unitary vectors. Thus, the waves mostly propagate along the x direction. For each wave
� = l, s, p, we use the eikonal formalism to locally define their frequency and wavevector: k� = ∇��

and �� = −�t��.
SRS-coupled wave envelope equations in a homogeneous two-dimensional plasma then write

�tEp + vNL
gp �xEp +

(
vNL
gp

�kp⊥
kp

+ vNL
gp⊥

)
· ∇⊥Ep, +νNLEp = �p

��
��

NL
ElE

∗
s (2)

�tEs + c2

�s

[
ks�xEs − �kp⊥ · ∇⊥Es

] + i[��NL
p − vgs�kp//]Es − ic2

2�s

�⊥Es = �sElE
∗
p, (3)

�tEl + c2kl

�l

�xEl − ic2

2�l

�⊥El = −�lEsEp. (4)

In this system, all coefficients which are superscripted with NL present nonlinear dependence with
respect to the plasma wave amplitude, Ep. These are: the Landau damping rate νNL, the plasma wave

group velocity vNL
gp , the nonlinear frequency shift ��NL

p and the nonlinear variation of the coupling

coefficient ��
��

NL
. As shown in Refs. [3, 6, 7], because the electron motion is nearly adiabatic, these

quantities are explicit functions of Ep, and their values may therefore be tabulated before the resolution
of the envelope equations, which saves a lot of computation time. As for the nonlinear wave number
shift, �kp, it is deduced from the consistency relation �t�kp + ∇��NL

p = 0.

3. BRAMA SIMULATIONS IN 2D

All the simulation results presented here are for a 100 �m × 14 �m homogenous two-dimensional
plasma irradiated by a laser with wavelength � = 527 nm. The electron density is Ne/Nc = 0.036 and
the electron temperature is Te = 0.7 keV. Thus we have kp�De ≈ 0.34. The laser beam is focused at
the center of the plasma, where its intensity varies as exp(−y2/w2) with a waist w = 1 �m. Hence, the
beam divergence is only 9.5 degrees, which vindicates the use of the paraxial approximation to describe
its propagation. The laser peak intensity varies from 2.1015 to 1016 W/cm2.

For such a homogeneous plasma, the curve 	(ks), plotting the linear SRS growth rate as a function
of the scattered wave number exhibits a very sharp maximum at ks = kmax. The half width at half
maximum of this curve is �ks/ks ≈ 3%. Therefore, the scattered wave resulting from SRS should be
nearly monochromatic, with ks ≈ kmax, and this is what we indeed find in our kinetic simulations using
the PIC code CALDER [8], where SRS starts from the numerical noise.

For the time being, there is no modeling of plasma fluctuations in BRAMA, and this code actually
simulates the optical mixing of the laser with a nearly monochromatic counterpropagating seed whose
wave number is ks = kmax. The seed intensity has to be chosen small enough to make sure that, in our
simulations, we do not miss the linear regime. For this reason, the ratio 
 between the peak laser and
seed intensities is chosen to be less than 10−5. Moreover, as shown in Fig. 1 (a), varying 
 has a limited
impact on the laser threshold intensity, Ith, and on the SRS reflectivity beyond threshold. Indeed, if we
define Ith as the intensity beyond which the SRS reflectivity is larger than 1%, then, when 
 = 10−5,
Ith ≈ 5 × 105 W/cm2, while when 
 = 10−10, Ith ≈ 7 × 105 W/cm2. Hence, a variation in 
 by 5 orders
of magnitude induces a change in Ith by less than 50%.

As for the values of SRS-reflectivities actually plotted in Fig. 1 (a), we now need to explain how we
estimate them. Fig. 1 (b) shows an example of the time evolution of Raman reflectivity, R, calculated
with BRAMA when Ilaser = 1016 W/cm2 and 
 = 10−5. In this example, the seed is strongly amplified
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Figure 1. (a) SRS-reflectivity inferred from BRAMA simulations, as a function of the laser intensity. (b)
Reflectivity vs time for a BRAMA simulation when Ilaser = 1016 W/cm2 and 
 = 10−5.
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Figure 2. Profiles of the laser, plasma and scatterd waves derived from BRAMA simulations at t = 0.6 ps when
Ilaser = 1016 W/cm2 and 
 = 10−5. Plotted data are I� ≡ 2ε0c|E�|2 in units 1015 W/cm2.

due to Raman scattering and, as R grows, together with the EPW amplitude, we find that this wave
undergoes a strong self-focussing, illustrated in Fig. 2. When R < 1%, self-focussing is not yet effective,
so that our paraxial approximation is valid. By contrast, when R has reached 6%, the transverse size of
the plasma wave packet has become less than the laser wavelength, and we stop the simulation at this
point, since this result is unphysical. Actually, although we cannot prove it, it seems quite clear that the
strong self-focussing we numerically observe should break the coherence of the three-wave interaction
and, therefore, should saturate the growth of Raman scattering. From our BRAMA simulations, we
therefore infer that, when Ilaser = 1016 W/cm2, 1% < R < 6%, and, in Fig. 1(a), we plot what we
believe is an overestimate of Raman reflectivity which should, nevertheless, provide the right order of
magnitude for R. Direct comparisons, reported in Ref. [9], between results from BRAMA simulations
and those obtained in Ref. [2] from PIC simulations show the relevance of our procedure.

We also performed comparisons between PIC and BRAMA simulation results as regards the typical
timescale for Raman growth. This is made difficult by the difference in the way SRS is triggered in both
codes. In a PIC code, SRS starts from noise and, as a result, the maximum EPW amplitude is always
located towards the left-end of the simulation box, because backward SRS naturally tends to grow from
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Figure 3. EPW electric field at y = 0 and at times t = 0.649 ps and t = 0.763 ps derived from CALDER when
Ilaser = 1016 W/cm2 and 
 = 10−5.

Figure 4. EPW electric field at y = 0 and at times t = 0.562 ps and t = 0.676 ps derived from BRAMA simulations
when Ilaser = 1016 W/cm2 and 
 = 10−5.

right to left. This is clearly illustrated in Fig. 3 obtained with the PIC code CALDER. By contrast, in
BRAMA, the EPW starts to grow at the center of the simulation box, where the laser and the seed first
meet. Then, as SRS grows, the maximum amplitudes of the plasma and scattered waves move to the
left (see Fig. 4). Despite this discrepancy, we can estimate that the rate at which the maximum EPW
amplitude grows in CALDER simulations is, from Fig. 3, 1.8.1010/9.109/(0.763 − 0.649) � 17 ps−1,
while from Fig. 4 we find that, in BRAMA simulations, this rate is 1010/6.109/(0.676 − 0.562) =
15 ps−1 . Hence, the typical timescale for the growth of the EPW in the nonlinear regime is nearly
the same in both codes. This shows that these two codes essentially describe the same physics, since the
nonlinear kinetic effects mostly affect the growth of the EPW.

4. CONCLUSION

In conclusion, based on a direct theoretical calculation of the nonlinear electron motion in a plasma
supporting a large amplitude EPW, we derived envelope equations valid in a three-dimensional geometry
and accounting for nonlinear kinetic effects. These equations were solved in 2D using our envelope code
BRAMA to simulate the optical mixing of the laser with a small amplitude, nearly monochromatic,
counterpropagating seed. The simulation results obtained with BRAMA were moreover compared with
those of PIC simulations, where SRS starts from noise. Despite this discrepancy, we found a good
agreement between the laser threshold intensities, the SRS reflectivities beyond threshold and the typical
timescale for Raman growth in the nonlinear regime as given by BRAMA and by a PIC code, while a
BRAMA simulation requires a computing time 4 to 5 orders of magnitude shorter than a PIC one.
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