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Abstract. We present a short overview of the main aspects of the Higgs Effective Lagrangian. In particular we
highlight a strategy to determine whether the electroweak symmetry breaking sector is controlled by a strong
or a weak dynamics. We give an estimate of the effects of the effective operators on physical observables and
review the most important bounds on the Wilson coefficients of the effective operators.

1 The Effective Lagrangian

After the discovery of a boson with mass mh ' 125 GeV
by both the ATLAS [1] and CMS [2] collaborations, it is
of crucial importance to find the best strategy to study the
properties of the new particle, and to investigate the nature
of the mechanism behind the electroweak (EW) symmetry
breaking. As the production cross section and decay rates
of the new boson are compatible with those of the Stan-
dard Model (SM) Higgs boson, and no hint of the exis-
tence of additional new resonances has revealed itself yet,
a parametrization in terms of effective operators seems to
be the most appropriate approach to investigate the prop-
erties of the new boson. Such an effective description is
valid as long as New Physics (NP) states appear at a scale
M � mh, and is based on an expansion in the number of
fields and derivatives [3]. The detailed form of the effec-
tive Lagrangian depends on which assumptions are made.
In the light of the current experimental measurements, it
is reasonable to assume that the new boson h is a CP-even
scalar that forms an S U(2)L doublet together with the lon-
gitudinal polarizations of the W and Z, so that at high ener-
gies the S U(2)L×U(1)Y EW symmetry is linearly realized.
Under these assumptions, the Higgs Effective Lagrangian
(HEL) is formed by a sum of operators of increasing di-
mensionality, where the leading NP effects are given by
dimension-6 operators.

The most general and systematic classification of the
dimension-6 operators for a weak doublet H was made in
Ref. [4]. Subsequent analysis pointed out the presence of
some redundant operators, and a minimal and complete
list of operators was finally provided in Ref. [5]. A conve-
nient basis of operators for Higgs physics was discussed in
Ref. [6], assuming that the Higgs boson is a CP-even weak
doublet and the baryon and lepton numbers are conserved.
This basis was recently proposed again in Ref. [7], where
a deep analysis of the operators which affect the Higgs
physics is provided. In this proceeding we will summarize
the main results pointed out in Ref. [7].

2 Estimates of the Wilson Coefficients

In order to investigate the nature of the dynamics behind
the EW symmetry breaking, it can be crucially helpful
to identify which operators of the HEL can probe the
strength of the Higgs couplings to the states belonging to
the new dynamics, and which operators are sensitive only
to the mass scale M. This is of key importance to dis-
tinguish between weakly-coupled UV completions of the
SM, like Supersymmetric (SUSY) theories, and theories
where the EW symmetry is broken by a new strongly-
interacting dynamics which forms the Higgs boson as a
bound state [6, 8–10]. These are the two most compelling
scenarios put forward to solve the hierarchy problem of
the SM.

We start recalling the classification of the dimension-
6 operators proposed in Ref. [6], that is based on an ex-
pansion of the HEL in the number of fields and deriva-
tives: any extra derivative costs a factor 1/M, and any extra
Higgs field brings a factor 1/ f ≡ g∗/M, where g∗ ≤ 4π is
the generic coupling of the Higgs boson to the NP states.
Through this simple naive dimensional analysis, the au-
thors of Ref. [6] could write a dimensional pre-factor in
front of the effective operators and define the Wilson co-
efficients to be of O(1). A slightly different approach was
followed in Ref. [7], where the pre-factors were defined
in terms of the well-known SM parameters mW and v (in-
stead of M and f ) in order to provide a suitable framework
for model-independent studies. It follows that in this case
the Wilson coefficients c̄i are not of O(1), as they contain
all the dependence on the model-dependent parameters M
and f (or, to be more precise, the dependence on the ratios
M/mW and f /v). This parametrization is also appropriate
for the implementation of the HEL into automatic tools for
the computation of physical quantities, like the Higgs pro-
duction cross sections and decay rates. As an example, see
the program eHDECAY [11], available now at the following
URL: http://www.itp.kit.edu/~maggie/eHDECAY/. It is a
modified version of the program HDECAY [12, 13], which
includes the full list of leading bosonic operators from the
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HEL, as well as all the available QCD and EW higher-
order contributions.

Hereafter we will adopt the parametrization suggested
in Ref. [7], and in particular we will refer to the Effec-
tive Lagrangian Eqs. (2.1)-(2.4) of the Ref [7]. With those
definitions and according to the naive power counting one
estimates:

c̄H , c̄T , c̄6, c̄ψ ∼ O
(
v2

f 2

)
, c̄W , c̄B ∼ O

m2
W

M2

 ,
c̄HW , c̄HB, c̄γ, c̄g ∼ O

 m2
W

16π2 f 2

 , c̄Hud ∼ O
(
λuλd

g2
∗

v2

f 2

)
,

c̄Hψ, c̄′Hψ ∼ O

λ2
ψ

g2
∗

v2

f 2

 , c̄ψW , c̄ψB, c̄ψG ∼ O
 m2

W

16π2 f 2

 ,
(1)

where λψ denotes the coupling of a generic SM fermion
ψ to the new dynamics. These estimates hold at the
scale M, at which the HEL is matched onto explicit mod-
els. At the EW scale they achieve contributions from the
renormalization-group flow, which give in general sub-
dominant corrections. Notice that the estimates in (1) can
play a role in understanding the nature of the EW sym-
metry breaking sector, as the dependence on g∗ is shown
explicitly. Indeed, it turns out that if the Higgs boson is
a composite state of a new dynamics at the scale M, it is
natural to expect g∗ � 1 (i.e. f � M). In this case,
the operators with extra powers of H give the leading cor-
rections to low-energy observables. On the other hand, in
weakly-coupled completions of the SM, where g∗ ∼ g, all
operators with the same dimension can be equally impor-
tant.

It follows from the estimate (1) that in the case of a
strongly-interacting light Higgs boson the leading NP ef-
fects in Higgs observables are parametrized by the oper-
ators OH,T,6,ψ, and by the fermionic operators OHψ,HΨ,Hud

and O′Hψ,hΨ
if the SM fermions strongly couple to the new

dynamics. On the other hand, c̄HW,HB,g,γ and the coeffi-
cients of the dipole operators are suppressed by an addi-
tional loop factor (g2

∗/16π2), as the corresponding opera-
tors cannot be generated at tree level in a minimally cou-
pled theory.

A special and phenomenologically motivated case is
represented by theories where the Higgs doublet is a
composite Nambu–Goldstone boson of a spontaneously-
broken symmetry G → H of the strong dynamics [6, 8–
10]. For these models the scale f must be identified with
the decay constant associated with the spontaneous break-
ing, and the naive estimate of the Wilson coefficients c̄i is
modified by the request of invariance under G in the limit
of vanishing explicit breaking. At the level of dimension-
6 operators, Oγ, Og, O6, Ou,d,l and the dipole operators
violate the shift symmetry Hi → Hi + ζ i (ζ i = const.)
that is included as part of the G/H transformations. This
means that they cannot be generated in absence of an ex-
plicit breaking of the global symmetry. It follows that the
naive estimates of the operators Oγ and Og carry in this

case an additional suppression factor [6],

c̄γ, c̄g ∼ O
 m2

W

16π2 f 2

× g2
6G

g2
∗

, (2)

where g6G denotes any weak coupling that breaks the Gold-
stone symmetry (one of the SM weak couplings in mini-
mal models, i.e. the SM gauge couplings or the Yukawa
couplings). On the other hand, the operators O6, Oψ, OψG,
OψW , OψB have been defined so that their pre-factor al-
ready includes one spurion coupling, precisely the Higgs
quartic coupling λ in O6, and the Yukawa coupling yψ in
the other operators – indeed, both these couplings vanish
for an exact Nambu-Goldstone boson. The estimates of
the corresponding coefficients c̄6, c̄ψ, c̄ψG, c̄ψW , c̄ψB given
in Eq. (1) are thus not modified.

3 Bounds on flavor-preserving operators
We report here the most interesting constraints on the Wil-
son coefficients c̄i obtained from current experimental re-
sults. The whole set of bounds on flavor-conserving op-
erators is presented in Ref. [7], while for a discussion on
the bounds on flavor-violating operators see for example
Refs. [14, 15]. Among the strongest bounds are those on
operators that modify the vector-boson self-energies. The
operator OT , for example, violates the custodial symme-
try [16] and contributes to the EW parameter ε1 [17, 18].
From the EW fit performed in Ref. [19], it follows, with
95% probability,

∆ε1 ≡ ∆ρ = c̄T (mZ) , −1.5×10−3 < c̄T (mZ) < 2.2×10−3 .
(3)

Such a stringent bound can be more naturally satisfied by
assuming that the dynamics at the scale M possesses an
(at least approximate) S U(2)V custodial invariance. In this
case cT (M) = 0, and a non-vanishing value will be gener-
ated through the renormalization-group flow of this Wil-
son coefficient down to mZ in the presence of an explicit
breaking of the custodial symmetry. The EW precision
tests also imply a strong bound on OW + OB [6], since this
linear combination contributes to the parameter ε3 [17, 18].
With 95% probability, one has [19]:

∆ε3 = c̄W (mZ) + c̄B(mZ) ,

−1.4 × 10−3 < c̄W (mZ) + c̄B(mZ) < 1.9 × 10−3 .
(4)

From the tree-level estimate of c̄W,B reported in Eq. (1), and
assuming an approximate custodial invariance to suppress
c̄T as explained above, it follows that Eqs. (3) and (4) set
a lower bound M & a few TeV. This bound is quite robust
and can be avoided only in weakly-coupled UV comple-
tions where an extra symmetry protection suppresses the
leading contribution to c̄W,B by an additional loop factor.
Notable examples are SUSY theories with R-parity.

For the fermionic operators strong constraints come
from the Z-pole measurements, as this class of operators
modify the couplings of the Z boson to quarks and leptons:

δgLψ

gLψ
=

1
2

(
−c̄HΨ + 2 T3L c̄′HΨ

)
T3L − Q sin2θW

,
δgRψ

gRψ
=

1
2

c̄Hψ

Q sin2θW
,

(5)
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where T3L and Q are respectively the S U(2)L and electric
charges of the fermion ψ, and Ψ = {L, q} is the S U(2)L

doublet to which ψL belongs. The bounds, obtained per-
forming a fit on the coefficients c̄Hψ, c̄HΨ and c̄′HΨ

, are
shown in Ref. [7]. Among them, the weakest is the one
on the operator OHb, which modifies the coupling of bR to
the Z boson:

−0.07 < c̄Hb < −0.005 . (6)

According to the estimates (1), such a set of bounds puts
a strong limit on the couplings of the SM fermions to the
new dynamics. Unless the scale of NP is very large, or
some specific symmetry protection is at work at the UV
scale, it follows that the SM fermions must be very weakly
coupled to the new dynamics (λψ � g∗), with the possible
exception of the top quark, as the operator OHt is totally
unconstrained by EW data (but also substantially irrele-
vant for the Higgs physics).

Finally, the constraints on the dipole operators come
mainly from the experimental limits on electric dipole mo-
ments and anomalous magnetic moments. It turns out that
the bounds involving the light quarks u and d are very
strong, implying, according to the naive estimate (1), a
bound on (v/ f )2 at the level of 10−3. In natural extensions
of the SM, such a strong limit clearly points to a symme-
try protection mechanism. Among the heavier quarks, the
most interesting bounds are those involving the top quark.
These come from the neutron electric dipole moment,

−1.39 × 10−4 < Im(c̄tG) < 1.21 × 10−4 , (7)

the b→ sγ and b→ sl+l− rates,

−0.057 < Re(c̄tW + c̄tB) − 2.65 Im(c̄tW + c̄tB) < 0.20 , (8)

and the tt̄ cross sections measured at Tevatron and LHC,

−6.12 × 10−3 < Re(c̄tG) < 1.94 × 10−3 . (9)

All these bounds are computed at 95% probability and at
the low-energy scale. It is interesting to notice that the
bounds on c̄tG, c̄tW and c̄tB are about one order of magni-
tude weaker than the size expected from the naive estimate
(1) with (v/ f )2 ∼ 0.1.

4 Effects on physics observables

In this section we will consider the contribution of the ef-
fective operators to physical observables, with particular
attention to the Higgs decay rates. We start considering
the operators OH , OT , Ou,d,l and O6, which modify the
tree-level couplings of the Higgs boson to fermions, vector
bosons and itself. In the unitary gauge and upon canonical
normalization of the Higgs kinetic term, the Lagrangian

reads [20]

L =
1
2
∂µh ∂µh −

1
2

m2
hh2 − c3

1
6

3m2
h

v

 h3 + . . .

+ m2
W W+

µ W− µ

(
1 + 2cW

h
v

+ . . .

)
+

1
2

m2
Z ZµZµ

(
1 + 2cZ

h
v

+ . . .

)
−

∑
ψ=u,d,l

mψ(i) ψ̄(i)ψ(i)
(
1 + cψ

h
v

+ . . .

)
+ . . . (10)

where the Higgs couplings ci=W,Z,ψ,3, have been defined
such that ci = 1 in the SM. The shifts from the SM value
are of order

δci ∼
g2
∗v

2

M2 =
v2

f 2 . (11)

Hence, measuring the Higgs couplings probes the strength
of its interactions to the new dynamics.

The operators OW and OB can be generated at tree-
level by the exchange of heavy particles, like, for example,
spin-1 states. In the unitary gauge they can be written in
terms of the following three operators:

(DµW+
µν)W

− νh , (∂µZµν)Zνh , (∂µγµν)Zνh (12)

plus terms with zero or two Higgs fields. It can be easily
seen that these operators give corrections to the tree-level
Higgs couplings and generate quartic interactions of the
type hVψ̄ψ, that contribute to the three-body decays h →
VV∗ → Vψψ̄. Indeed, it turns out that OW and OB can be
expressed in terms of other operators of the HEL:

OW = − 6 OH + 2 ((Ou + Od + Ol) + h.c.)

− 8 O6 + O′Hq + O′HL , (13)

OB = 2 tan2θW

(
−OT + OY

HΨ

)
, (14)

where OY
Hψ ≡

∑
ψ YψOHψ. The contribution of OW,B to the

Higgs decay rates is of order m2
W/M

2, i.e. these operators
are sensitive only to the value of the NP scale M:

δΓ(h→ VV)
Γ(h→ VV)

∣∣∣∣∣
OW ,OB

∼ O
m2

W

M2

 , (15)

where in this case VV = W (∗)W∗,Z(∗)Z∗,Z(∗)γ, γγ.
Now let us move to the operators OHW ,OHB,Oγ and

Og. They are generated at the one-loop level, and in the
unitary gauge are rewritten in terms of

W+
µνW

− µνh , ZµνZµνh , γµνγ
µνh , Zµνγµνh (16)

plus other terms with zero or two Higgs fields. As im-
plied from the naive estimates (1), the contribution of
OHW,HB,γ to the WW and ZZ inclusive rates is of order
(VV = WW,ZZ)

δΓ(h→ VV)
Γ(h→ VV)

∣∣∣∣∣
Oγ ,OHW ,OHB

∼ O
 m2

W

16π2 f 2

 . (17)
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This effect is sensitive to the interaction strength g∗, but
also suppressed by the loop factor. On the other hand, the
processes h → γγ, h → Zγ and h → gg can in principle
test the Higgs interaction strength more powerfully, since
they arise at the one-loop level in the SM. Naively one
gets:

δΓ(h→ gg, γγ,Zγ)
Γ(h→ gg, γγ,Zγ)

∣∣∣∣∣
Og,Oγ ,OHW ,OHB

∼ O
(
v2

f 2

)
, (18)

but if the Higgs boson is a Nambu-Goldston boson, the
coefficients c̄g and c̄γ are further suppressed by a factor
(g6G/g∗)2, according to the estimate (2). This implies that
in this class of theories the corrections to Γ(h → γγ) and
Γ(h → gg) depend only on the scale M, and we are left
only with Γ(h→ Zγ) to test the value of g∗.

On the fermionc-operator side, we see that the op-
erators of the form (ψ̄γµψ)(H†

←→
DµH) are sensitive to the

strength of the couplings of the Higgs boson and of the
SM fermions to the new dynamics. They lead to contact
corrections to the three-body decays h → VV∗ → Vψψ
which are naively of order

δΓ(h→ Vψ̄ψ)
Γ(h→ Vψ̄ψ)

∼ O

 v2

f 2

λ2
ψ

g2
∗

 . (19)

Compared to the corrections from OW and OB, the effect
of the fermionic operators is potentially enhanced by a fac-
tor (λ2

ψ/g
2). In practice, the possibility of large fermionic

couplings λψ is strongly constrained by LEP, as mentioned
above. Hence, the only way to have a large degree of com-
positeness of either the left- or the right-handed quarks is
to have some protective symmetry which prevents the gen-
eration of this kind of operators.

Finally, let us consider the dipole operators. While
those involving light fermions are strongly constrained by
experimental data, potentially sizable effects could come
from operators with the top quark. For example, the esti-
mates of the contributions of OtG to gg → h, gg → tt̄ and
gg→ tt̄h are

δσ(gg→ h)
σ(gg→ h)

∼ ĉtG ,
δσ(gg→ tt̄)
σ(gg→ tt̄)

∼ ĉtG

√
s

mt
,

δσ(gg→ tt̄h)
σ(gg→ tt̄h)

∼ ĉtG
s

m2
t
,

(20)

with ĉtG ≡ Re(c̄tG) (m2
t /m

2
W ) ∼ m2

t /(16π2 f 2) ' 3 ×
10−3(v2/ f 2). One immediately notice that the study of
the differential distributions could be a successful strat-
egy. The NP contribution to the process gg → tt̄h can in
principle get the largest enhancement from a cut on

√
s,

but the small rate might limit the sensitivity achievable
at the LHC. Thus, the most sensitive process is perhaps
gg→ tt̄, in particular at large invariant mass, although the
current experimental precision is still insufficient to con-
strain (v/ f ).

5 The HEL beyond the tree level
In conclusion of this short overview of the main aspects of
the HEL, we recall a few issues, treated more exhaustively

in Ref. [7], about the HEL beyond the tree level, as re-
quired to make Higgs precision physics without assuming
the validity of the SM.

The first difficulty that one has to face is the presence
of multiple expansion parameters. In fact, the validity of
the HEL is based on the perturbative expansion in the SM
couplings, αS M/(4π), in powers of E/M (derivative expan-
sion) and in powers of v/ f , under the condition v � f . All
these expansion parameters must be properly taken into
account when performing calculations. Furthermore, the
non-renormalizability of the effective theory implies the
presence of additional divergences compared to the SM
case which must be absorbed by a renormalization of the
Wilson coefficients of local operators.

While referring the reader to Ref. [7] for a proper dis-
cussion of the renormalization issue, here we will focus
on the long-distance contributions. In general, the decay
amplitude can be expanded as follows: 1

A = AS M
0 + AS M

1 + ∆A0 + ∆A1 + . . . (21)

where AS M
0 (AS M

1 ) is the tree-level (one-loop) SM ampli-
tude, and ∆A0 (∆A1) is the tree-level (one-loop) contribu-
tion from the dimension-6 operators of the HEL. The dots
denote higher-loop contributions as well as the corrections
due to higher-order operators.

To be more concrete, let us focus on the decay h →
W (∗)W∗, keeping in mind that the other processes must be
treated in the same spirit. In our example, the operators
that can contribute at the tree level are OH , OW , OHW , OψW ,
O′Hψ, as well as OHud when the off-shell W decays into a
pair of quarks. Based on the naive estimates (1), we can
quantify the various effects encoded by ∆A0 as follows:

∆A0

AS M
0

(W (∗)W∗) = ĉH × O
(
v2

f 2

)
+ ĉW × O

(
E2

M2

)

+ ĉHW × O
(

E2

16π2 f 2

)
+ ĉHud × O

(
v2

f 2

λuλd

g2
∗

)

+ ĉ′Hψ × O

 v2

f 2

λ2
ψ

g2
∗

 + ĉψW × O
(

Emψ

16π2 f 2

)
. (22)

Here E = mh is the relevant energy of the process and
we have conveniently defined each of the O(1) parame-
ters ĉi to be equal to c̄i(mh) divided by its naive estimate
in Eq. (1). When the Higgs boson is a pseudo Nambu-
Goldstone boson, the two parameters ĉg and ĉγ are not of
O(1), but are further suppressed by a factor g2

6G/g
2
∗. From

Eq. (22) one can see that the contribution of the dipole op-
erators OψW is suppressed by (mψ/mh) compared to that of
OHW , while that of OHud and O′Hψ is expected to be small
given the existing constraints on the couplings λψ (see the

1 In the strict sense this equation is valid for the genuine EW correc-
tions only, while for simplicity we include the (IR-divergent) virtual QED
corrections to the SM amplitude in the same way. The corresponding real
photon radiation contributions to the decay rates are treated in terms of a
linear novel contribution to the Higgs coupling for the squared amplitude
in order to obtain an infrared finite result. Pure QED corrections factor-
ize as QCD corrections in general so that their amplitudes scale with the
modified Higgs couplings. However, they cannot be separated from the
genuine EW corrections in a simple way.
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discussion in Section 3). Thus, the dominant NP contribu-
tion comes from the first three terms of Eq. (22), among
which the one proportional to c̄H is the leading effect for
g∗ > g. On the other hand, the 1-loop EW amplitude AS M

1
gives a contribution of order AS M

1 /AS M
0 ∼ (α2/4π). Hence,

we see explicitly that ∆A0 and AS M
1 encode the NLO cor-

rections in the three expansion parameters we are consid-
ering: α2/4π (EW expansion), E2/M2 (derivative expan-
sion) and v2/ f 2. The contribution due to 1-loop diagrams
with one insertion of the effective vertices has not been
computed yet, but we can easily estimate its size:

∆A1

AS M
0

(W (∗)W∗) = ĉH × O
(
v2

f 2

α2

4π

)
+ ĉu × O

(
v2

f 2

α2

4π

)

+ ĉ6 × O
(
v2

f 2

α2

4π

)
+ . . . (23)

The terms shown in Eq. (23) arise from the same 1-loop
diagrams that give the SM amplitude AS M

1 , where each of
the Higgs couplings gets shifted by c̄H , c̄u and c̄6. By ne-
glecting the unknown ∆A1 one is omitting terms of order
(v2/ f 2)(α2/4π), that is, of the same size of the tree-level
contribution due to the operator OHW , see Eq. (22), since
E = mh ≈ mW . This latter contribution can be easily com-
puted and it is included in the formula of the decay rate
to WW (and similarly that of OHW and OHB to ZZ is also
included) implemented in the program eHDECAY discussed
in Ref. [11] and should be seen as the first step towards a
full inclusion of the O[(v2/ f 2)(α2/4π)] corrections.

Finally, the NLO expression for the decay rate of a
Higgs boson to a W pair is given by the following formula:

Γ(W (∗)W∗) =ΓS M
0 (W (∗)W∗)

×

{
1 +

2
|AS M

0 |
2

Re
[(

AS M
0

)∗ (
AS M

1 + ∆A0

)]
+ O

( v2

f 2

)2

,

(
α2

4π
v2

f 2

)
,
(
α2

4π

)2
 } , (24)

where ΓS M
0 (W (∗)W∗) denotes the tree-level SM decay rate.

For simplicity, we have not shown terms involving pow-
ers of E2/M2 among the neglected contributions, since for
E = mh ≈ mW one has E2/M2 . v2/ f 2 if g∗ & g. The in-
clusion of the O(m2

h/M
2) tree-level correction due to OW is

justified as long as g∗ < 4π, since it is parametrically larger
than the neglected O[(v2/ f 2)(α2/4π)] terms by a factor
(16π2/g2

∗). Notice that in the limit of large deviations of
the Higgs couplings from their SM values, (v/ f )2 ∼ O(1),
the neglected terms of O[(v2/ f 2)(α2/4π)] become as im-
portant as those included through AS M

1 . In other words, a
proper inclusion of the EW corrections in the limit v ∼ f

requires a complete 1-loop calculation where each of the
diagrams is rescaled by the appropriate coupling factor.
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