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Abstract. An approximate expression for the inclusive Higgs production cross section in gluon fusion at N3LO
in QCD with finite top mass is presented. We argue that an accurate approximation can be constructed com-
bining (and improving) the large- and small-z behaviours of the partonic cross section, which are both known
to all orders from soft-gluon (Sudakov) and high-energy (BFKL) resummations, respectively. For a 125 GeV
Higgs at LHC at 8 TeV, we find an increase of about 6–13% with respect to the NNLO inclusive cross section
for the conventional scale µR = mH/2, suggesting that higher order QCD corrections might be underestimated
by presently available results. We also find a significant reduction of the scale uncertainty.

1 Introduction

In the aftermath of the discovery of the Higgs boson, the
measurement of its properties is one of the main tasks of
the LHC experiments. Accurate theoretical predictions
play a fundamental role in such measurements. However,
the cross section for Higgs production through gluon fu-
sion (the dominant production channel) is affected by a
very bad perturbative behavior. Indeed, QCD corrections
to the process, known at NLO [1–3] and NNLO [4–10],
give rise to very large K-factors, and only a mild reduction
of the scale dependence. Therefore, the knowledge of the
impact of yet higher order corrections is mandatory.

Although the computation of the N3LO correction (as
a soft expansion and in the large mt limit) to the cross sec-
tion is in progress [11–14], in Ref. [15] we have derived an
approximate expression for it. Our approximation is based
on combining a soft approximation and a high-energy ap-
proximation, taking into account the exact mt dependence.
The consistency of the combination gives some constraints
which turn out to improve significantly the accuracy and
the reliability of the result.

In the following we briefly review the basic proper-
ties of our approximation, while we refer the Reader to
Ref. [15] for a detailed discussion, and we present some
new unpublished results, namely we show our prediction
for higher LHC energies and we discuss the impact of the
virtually largest unknown contribution at order α3

s .

2 Combined soft and high-energy
approximations

The inclusive Higgs production cross section is given as
a sum over partons of convolutions of a parton luminosity

Li j(x, µ2
F ) and a coefficient function Ci j,

σ(τ,m2
H) = τσ0(m2

H , αs)
∑

i, j={q,g}

∫ 1
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z
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2
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2
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)
, (1)

where αs ≡ αs(µ2
R), σ0(m2

H , αs) is the leading order par-
tonic cross section, τ = m2

H/s and µF, µR are the factoriza-
tion and renormalization scales. The sum over partons is
dominated by i = j = g, the other channels giving a contri-
bution of about 3% of the total result at NNLO. Concen-
trating therefore on the gg channel, and suppressing the
subscripts and the dependence on the scales, we have the
expansion

C(z, αs) = δ(1− z) + αsC(1)(z) + α2
sC

(2)(z) + α3
sC

(3)(z) + . . .
(2)

Currently, the NLO coefficient C(1)(z) is known ex-
actly [3], while the NNLO coefficient C(2)(z) is known ei-
ther in the large-mt effective theory [4–6] or as an expan-
sion in powers of mH/mt [7–10].

In Ref. [15] we have constructed an approximation to
the N3LO coefficient based on the decomposition

C(3)
approx(z) = C(3)

soft(z) + C(3)
h.e.(z), (3)

where Csoft contains terms predicted by soft-gluon (Su-
dakov) resummation and reproduces the z → 1 behavior,
and Ch.e. contains terms predicted by high-energy (BFKL)
resummation and describes the z → 0 limit. In N space,
where N is the variable conjugate to z by Mellin transfor-
mation, C(3)

soft(N) reproduces the logarithmic large N be-
havior and C(3)

h.e.(N) the rightmost singularity in N = 1. In
principle, if all the singularities in the complex N plane
were known, it would be possible to reconstruct the func-
tion everywhere; in practice, the knowledge of the domi-
nant singularities (N = ∞ and N = 1) is sufficient to give a
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good approximation of the function in the physical region
Re N > 1, the other singularities, placed at integer non-
positive values of N, giving a subdominant contribution.

In the following we give some details on the construc-
tion of both approximations, with an emphasis on the im-
provements over the commonly used results, and we will
demonstrate the reliability of the approximations by com-
parison to the first two known perturbative orders.

2.1 Improved soft approximation

The largest contribution at the current and foreseeable fu-
ture collider energies comes from the soft part. This is
mainly due to the fact that the gluon-gluon luminosity,
peaked at small x, enhances the contribution from the soft
region of the partonic coefficient. This statement can be
made quantitative in N space, by means of a saddle point
argument [16], noticing that the region of N contributing
to the hadron-level cross section is localized about the po-
sition of the saddle point of the Mellin inversion integrand.
For mH = 125 GeV and

√
s = 8 TeV, the saddle point is

at N ∼ 2, a value at which the high-energy contribution is
small (see Sect. 2.2).

On the other hand, the region N ∼ 2 cannot be re-
garded as a large N region, given that terms suppressed by
one or more powers of 1/N with respect to the logarith-
mically growing soft terms, hereafter called subdominant,
usually negligible at large N, give in general a sizable con-
tribution at N ∼ 2. Therefore, the quality of a soft approx-
imation at the saddle point strictly depends on the control
on such subdominant terms. In fact, some of these terms
are under control to all orders in perturbation theory [17],
and their inclusion in a soft approximation leads to a sig-
nificant improvement of the quality of the approximation
itself.

Our soft approximation is constructed as follows.
Starting from a resummed (all-order) soft expression in N
space, we expand it in powers of αs, obtaining a linear
combination of powers of log N. We then take the inverse
Mellin transform, which is a linear combination of loga-
rithms of the form1

logk log 1
z

log 1
z

(4)

for integer values of k. We then apply the following two
improvements:

• We use the exact logarithmic terms as originating from
the kinematics of gluon emissions, which have the form

logk 1−z
√

z

1 − z
. (5)

Usually the factor
√

z is neglected in the soft limit, and
in resummed expressions the Mellin transform of such
terms, which is given by polygamma functions, is ap-
proximated with powers of log N. This second approx-
imation, in particular, is incompatible with the analytic
1We omit the details related to the distributional nature of the loga-

rithms, for which we refer to the original work [15].

structure of the coefficient function, since log N has a
branch-cut for negative real N while polygamma func-
tions have just poles in integer non-positive values of N.

• We include for each emission the appropriate (leading)
Altarelli-Parisi splitting kernel,2

pgg(z) =
Ag(z)
1 − z

, Ag(z) =
CA

π

1 − 2z + 3z2 − 2z3 + z4

z
.

(6)
Usually, Ag(z) is approximated with Ag(1), and only the
divergent part of pgg, (1 − z)−1, is kept. However, we
point out (following an observation in Ref. [17]) that the
inclusion of subleading terms in Ag(z) significantly im-
proves the soft approximation. In fact, the exact expres-
sion of Ag(z) would introduce a double counting with
high-energy terms (because of the z−1 term), and we
therefore use an expansion of Ag(z) about z = 1 to order
1 and 2 (above 2 there is no practical difference in the
region N & 2). The difference between these two results
gives information on the size of the subdominant terms
that are not included, and therefore provides a measure
of the uncertainty associated with the soft approxima-
tion.

In Fig. 1 the NLO and NNLO coefficient functions C(1)(N)
and C(2)(N) are shown together with their soft approxima-
tions. The two green curves (filled with a green band in
between) represent the construction of the soft approxima-
tion described above, for the expansion of Ag(z) to first and
second order in (1 − z). It is clear from the plots that the
soft approximation reproduces well the exact coefficient
for N & 2, the approximation obtained expanding to sec-
ond order Ag(z) (the lower green curve at large N) being
closer to the exact result.

2.2 High-energy approximation

The leading pole in N = 1 at each power of αs is predicted
to all orders by BFKL resummation [18, 19], and can be
obtained from the all-order formula

CABF(N, αs) =
∑

i1,i2≥0
i1+i2>0

ci1,i2

[
γi1

+ (N, αs)
][
γi2

+ (N, αs)
]
, (7)

where γ+ is the largest eigenvalue of the DGLAP singlet
anomalous dimension matrix, the square brackets symbol-
ize the inclusion of running coupling effects [18, 19], and
ci1,i2 are numeric coefficients that have been computed to
the first few orders in Refs. [7, 20]. Eq. (7) predicts cor-
rectly the coefficient of the highest order N = 1 pole at
each power of αs, provided the anomalous dimension is
accurate at the same (leading logarithmic) level. How-
ever, for a consistent resummed result it is more con-
venient to use the resummed anomalous dimension, be-
cause the resummation changes the position of the leading
pole. Since the resummed anomalous dimension vanishes
in N = 2 (momentum conservation) this implies, in turn,
that CABF(2, αs) would vanish as well.

2Since in Sudakov resummation the single emission exponentiates,
this factor is in fact included at the exponent, before expanding in powers
of αs.
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Figure 1. Comparison of the NLO (left) and NNLO (right) exact coefficient functions to their soft, high-energy and combined approx-
imations.

For our purpose, i.e. obtaining a high-energy approx-
imation to the coefficient function at a finite perturbative
order, we consider the expansion of Eq. (7):

CABF(N, αs) =

∞∑
n=1

αn
sC

(n)
ABF(N). (8)

The computation of C(3)
ABF(N) requires the anomalous di-

mension γ+ up to order α3
s . We could use the exact anoma-

lous dimension, which is known; however, it grows loga-
rithmically at large N, and this would interfere with the
soft approximation, spoiling its accuracy. Therefore we
adopt the following procedure:

• We take an expansion of the anomalous dimension about
N = 1 to NLL order (namely the largest and the next-to-
largest pole at each order in αs). We stress that the final
result, C(n)

ABF(N), is still accurate at LL only, though the
NLL terms included in this way may (and do) improve
the accuracy of the approximation.

• Since C(n)
ABF(N) constructed in this way still doesn’t van-

ish at large N, we subtract the large N terms,

C(n)
ABF-sub(N) = C(n)

ABF(N) − 2C(n)
ABF(N + 1) + C(n)

ABF(N + 2),
(9)

introducing spurious poles at integers N ≤ 0, hereafter
called subdominant, which are beyond our control. This
subtraction corresponds to a z-space damping (1 − z)2.

• Finally, since the momentum conservation property of
CABF is lost in this procedure, we restore it by hand
adding a subdominant term,

C(n)
h.e.(N) = C(n)

ABF-sub(N) −
4! kmom

N(N + 1)(N + 2)
, (10)

where kmom must equal C(n)
ABF-sub(2). In order to estimate

the impact of subdominant poles, we assign an arbitrary
5% uncertainty to kmom, using Csoft(2) as a reference:

kmom = CABF-sub(2) ± 0.05 ×Csoft(2). (11)

The results at NLO and NNLO are shown in Fig. 1. The
high-energy part alone is accurate only very close to the
singularity in N = 1, while it vanishes fast for N & 2.
The combination Csoft +Ch.e., red curves (corresponding to
the two soft curves), is instead very accurate in the whole
range N > 1. The red band is the (linear) combination
of the soft and high-energy uncertainties, and represents
our final estimate of the error from neglected subdominant
terms.

We conclude that our construction is robust and gives
accurate approximations to the first two orders in perturba-
tion theory. Arguing that this feature remains true at higher
orders, we have constructed an approximate expression for
the third order coefficient, Eq. (3). In the next Section we
will use it to predict the N3LO cross section.

3 Results

We present here the result for the production cross section
of a Higgs boson with mass mH = 125 GeV at the LHC for
several collider energies. Differently from Ref. [15], we
use here the NNPDF2.3 pdf set [21], with αs(m2

Z) = 0.118.
Results are obtained with the code ggHiggs [22].

In Fig. 2 we show the dependence of the cross section
on the renormalization scale µR, keeping the factorization
scale fixed µF = mH (in this way we capture the largest de-
pendence at low collider energies, since the factorization
scale dependence is very mild over a wide range [14, 15]).
In addition to the exact (with exact mt dependence) LO,
NLO and NNLO, we show our approximation for the
N3LO cross section (red curve) with the estimated error
from the unknown subdominant terms (red band) as de-
scribed in Sect. 2. We observe that our prediction corre-
sponds to an increase of the cross section which ranges
from about 17% to about 13% for collider energies from
8 TeV to 100 TeV at the central scale µR = mH , while the
increase is lower at the scale µR = mH/2, from about 11%
to about 7% for the same energies.

To show the impact of the soft and high-energy terms
separately, we also plot the approximation obtained con-
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Figure 2. Dependence of the N3LO cross section on the renormalization scale µR, for µF = mH = 125 GeV and collider energy 8 TeV
(top-left), 13 TeV (top-right), 33 TeV (bottom-left) and 100 TeV (bottom-right). The two standard choices of renormalization scale are
shown as vertical lines.

sidering the soft terms only (green lines and band). For
instance, at

√
s = 13 TeV (next LHC energy) the impact

in our central prediction of the high-energy terms is mini-
mal, since the red curve lies almost exactly in the middle
of the soft green band. At higher collider energies, the
high-energy terms become more relevant, consistently to
the fact that at higher energies the saddle point moves to
lower values [16] (about N ∼ 1.7 at

√
s = 100 TeV).

The plots show another curve denoted N-soft, which
corresponds to a soft approximation as obtained if we do
not apply the two improvements described in Sect. 2.1.
Such a curve is conceptually identical to the result of
Ref. [23], except some minor details. Therefore, the dif-
ference between our soft curves and the N-soft curve is en-
tirely due to the improvements we have introduced. Such
improvements turn out to predict a larger cross section,
and give a flatter scale dependence in the region of low µR,
where some sort of convergence of the perturbative expan-
sion shows up.

We finally discuss the impact of unknown dominant
terms. Indeed, the error band in our result accounts for
subdominant (i.e., not fixed by the resummation formal-
ism) unknown contributions, but in fact some dominant
terms are unknown. As discussed in Sect. 2.2, the high-
energy approximation is accurate only at LL level, but at

order α3
s also NLL and NNLL contribute. These contribu-

tions are definitely important close to N = 1, but they are
likely of the same order of subdominant terms at N ∼ 2
(where the saddle point lies for

√
s = 8 TeV), and are

therefore already taken into account by our uncertainty
band. On the other hand, at order α3

s all the soft loga-
rithmic terms are known, but the δ(1 − z) coefficient, cor-
responding in N space to a constant term, is unknown. To
investigate the impact of such unknown term, in Fig. 3 we
show several possibilities:

• In our approximation we have kept as a default choice
all the constant terms in N space coming from the Mellin
transform of the plus distributions, and we have set to
zero all the others. According to the terminology intro-
duced in Ref. [15], we have set ḡ0,3 = 0.

• This choice is conceptually similar to omitting the coef-
ficient of δ(1 − z) at order α3

s , as suggested in Ref. [23].

• A third possibility, which would be adopted in a naive
NNNLL resummation, would be to set to zero all the
constant terms in N-space, g0,3 = 0.

• Another possibility is to estimate the δ(1− z) coefficient
from lower orders [14]. In the large mt effective theory,
such coefficient factorizes into a Wilson coefficient and
a “pointlike” expansion in powers of αs/π, whose coeffi-
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√

s = 8 TeV, using different guesses
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s .

cients have been called a(n,0)
gg in Ref. [14]. Up to order α2

s

such coefficients are well behaved, with a(1,0)
gg /a(0,0)

gg ∼ 10
and a(2,0)

gg /a(1,0)
gg ∼ 1.4, and it then appears reasonable to

estimate 0 < a(3,0)
gg /a(2,0)

gg < 40, as proposed in Ref. [14].

Except the option g0,3 = 0, which looks unreasonable in
the light of the large coefficients of the perturbative expan-
sion of g0(αs) [15], all the other options are quite close
each other, and give an uncertainty comparable to the one
from subdominant terms. It is interesting to observe that
our default option predicts the largest cross section, while
the smaller (reasonable) prediction is obtained setting to
zero the coefficient of the δ(1 − z) term, which would de-
crease the size of the N3LO contribution from about 11%
to about 8% at µR = mH/2. Anyway, the difference among
these predictions can only set the size of the uncertainty
associated with the unknown coefficient, though only the
computation of such coefficient (even in the large mt effec-
tive theory) can solve the ambiguity.

4 Conclusions

We have constructed an approximation to the Higgs pro-
duction cross section combining and improving soft and
high-energy behaviors. At the known orders, such ap-
proximation accurately reproduces the exact result within
the estimated error coming from subdominant terms. We
have then used it to predict the N3LO cross section. The
largest uncertainty on our approximation comes from the
unknown dominant term proportional to δ(1 − z), whose
impact has been studied in some detail, and whose uncer-
tainty can only be fixed by its computation. Taking into
account all the uncertainties, we can reasonably conclude
that the N3LO correction amounts to a 6–13% increase
over the NNLO at the conventional scale µR = mH/2 for
√

s = 8 TeV. We also note that the scale uncertainty in
the conventional range mH/4 < µR < mH is reduced from
4.1 pb at NNLO to 2.3 pb at N3LO, which is rather larger
than the uncertainty on our approximation. This proves

that our result, though approximate, reduces the uncer-
tainty on the Higgs cross section, and provides therefore a
step forward in the Higgs precision phenomenology task.
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