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Measurement of Multijet Ratios and a Determination of ag at the Tevatron
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Abstract. In this poster we present several recent results for theustmh of multijet final states ipp colli-
sions at a center of mass energy of 1.96 TeV, taken with the Xp@ranent at the Fermilab Tevatron collider..
These measurements, defined as ratios of three-jet to tworgatities, reduce the dependence of the results on
Parton Distribution Functions (PDFs) and experimentalesyatic uncertainties. Based on one of these ratio
measurements, a value @f is determined and the running of tested over a wide range of jet transverse
momenta.

1 Introduction the event Prmay). Events were selected to have at least
two (three) jets above @r thresholdprmin for the two-

Measurements of multi-jet production take advantage ofjet (three-jet) sample. Four values pfmin Were stud-

the fact that these processes have the same PDF sensitivit¥d: 30, 50, 70, and 90 GeV. In figure 1 we show the

as dijet production, but are sensitive to processes to thirdsg|ues 0fRa2(Prmax; Prmin) compared to the predictions

order in the strong coupling constant Studies dedicated of next-to-leading quantum chromodynamics as obtained

to the dynamics of the interaction are preferably based orfrom FastNLO [7]. Details of the analysis, including es-

observables which are insensitive to the PDFs. Such obtimation of uncertainties and non-perturbative corratio

servables can be constructed as ratios of cross sections f@ the theoretical predictions and comparisons to several

which the PDF sensitivity cancels. In this note we report eyent generators, are given in [8]

a measur_ement of three r_nultuet ra.t'ORA"’ (4, deflned The ratioR,s was measured in events having at least

as the ratio of events having an azimuthal opening angle ) ) o et

A¢ between the leading two jets (in transverse momentunf© ths W'lth pr > 30 GeV, in bins OTHT = 2 plT

pr) less than a cutfd Admay, to the inclusive dijet sam- 2Ndy" = 3ly1 — y2l. where the subscripts 1,2 refer to

ple: Ryr, which is defined as the number of events with _the leading and next-to-leading jet in the event ordered

a neighboring jet within a separatiaR, divided by the M PT: Then RA?’(HT.’.y*’A‘ﬁma’f) was formed as the ra-
. L _ > > tio of events with dijet opening angl&¢ < Admax tO
number of inclusive jets (wher&R = +/(Ay)? + (A¢)? in . . - :
- ' N . the inclusive dijet sample. The ratio was measured for
plane of rapidity §) and¢); andRs/2, which is the ratio of three values of -3 5 11 and four ranges of
the inclusive three-jet to the inclusive 2-jet cross-sewi Pmax = T 5> 3 g :
These measurements are basedpprcollisions at a

O0<y*<0505<y" <10,and 10 < y* < 2.0. the re-
center of mass energy of 1.96 TeV which were recordedSUIts are shown in figure 2. Details of the analysis, includ-
with the D@ experiment [2] at the Fermilab Tevatron

ing estimation of uncertainties and non-perturbative cor-
collider. The data analyzed were recorded using a sin-

rections to the theoretical predictions, are given in [9]
gle jet triggers at a variety of thresholds, correspond- ~ The angular correlation of jets in an inclusive jet
ing to an integrated luminosity of 0.7 #4. The event sample is calculated be computing the rafar =
selection, jet reconstruction, jet energy and momentumy <"’ N® (AR . )/Ni«(pr) where Nia(pr) is the
corrections in these measurements follow closely thosghumber of inclusive jets in a bin of inclusive jgf, and
used in our recent measurements of inclusive jet and diNS&r(AR, phir. ) is the number of neighboring jets with
jet distributions[3-5]. Jets are defined by the Run Il mid- transverse momenta greater th#ff;  and separated from
point cone jet algorithm [6] with a cone radius (for most thei"inclusive jet byAR. The inclusive jet sample was de-
jet studies) oReone = V(Ay)? + (A¢)? = 0.7. fined as all events having at least one jet vith> 50 GeV
and|y| < 1.0. Results are shown in figure 3 for four values
of pir. (30, 50, 70, and 90 GeV). Details of the analysis,
2 Measurements of Ry, Rar, and Ry, including estimation of uncertainties and non-pertusleati
corrections to the theoretical predictions, are given 0 [1

Using the data forp??{“n of 50, 70, and 90 GeV and
combiningAR regions, we determine the strong coupling

a. e-mail: sawyer@phys.latech.edu constantrs and test the two—loop Renormalization Group

The ratio of inclusive three-jet to two-jet productid®y.,
was measured as a function of the of the leading jet in
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Figure 1. The measure®s, results, compared to the predictions from NLO pQCD corrected for non-perturbffgetsgtop), and the
ratio of data to theoretical predictions (bottom). The results are presented as a function of the highegjgs, for differentprmin

requirements.
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Figure2. (left) The results foR,, as a function oHy in three diferent regions oj* and for three dferentAgmax requirements. (right)
Ratios of the results d®,s and the theoretical predictions obtained for MSTW2008NLO PDFs [11ha(fdZ) = 0.118.
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Figure 3. The measurement &,r as a function of inclusive jgtr for three diferent intervals iR and for four diterent requirements
On the right the ratio to data to theory is shown.
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Figure 4. (left) The strong coupling at large momentum transfers, Q, presented#£®) (a) and evolved tdM; using the RGE (b).
(right) Our result from thdk,\r measurement, compared to previous results.
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