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Abstract. We investigate the stability of relativistic jets using three-dimensional hydrodynamic simulations.
The propagation of relativistic flow that is continuously injected from the boundary of computational domain
into a uniform ambient medium is solved. An intriguing finding in our study is that Rayleigh-Taylor and
Richtmyer-Meshkov type instabilities grow at the interface between the jet and surrounding medium as a result
of spontaneously induced radial oscillating motion. It is powered by in situ energy conversion between the
thermal and bulk kinetic energies of the jet. From complementary two-dimensional simulations of transverse
structure of the jet, we find the effective inertia ratio of the jet to the surrounding medium determines a threshold
for the onset of instabilities. The mixing between light faster jet and slow heavier external matters due to these
instabilities causes the deceleration of the jet.

1 Introduction

Morphology is one of the most fundamental property
of the relativistic jet. The formation of the hydrody-
namic/magnetohydrodynamic structure due to the interac-
tion between the jet and external medium is responsible
for the morphology of the jet. Observational, theoretical,
and numerical works have extensively been performed in
order to understand the jet morphology in various high-
energy astrophysical phenomena, such as active galactic
nuclei (AGNs) [1, 2], microquasars [3], and gannma-ray
bursts (GRBs) [4, 5].

Basic features of the propagation and morphology of
the jet are well established by analytical and numerical
studies [6–10] although the formation mechanism of rel-
ativistic jets is a long-standing problem in AGNs, micro-
quasars, and GRB jets (but see, e.g., [11–14]). Figure 1(a)
schematically depicts the traditional picture of the rela-
tivistic jet propagating through the ambient medium. The
propagation of the jet generates a bow shock structure at
the head of the jet. The jet boring through the ambient
medium is not in direct contact with the undisturbed am-
bient medium, but rather is enveloped in a hot cocoon
consisting of shocked jet material and shocked ambient
medium. Inside the jet, reconfinement shocks are formed
due to a pressure mismatch between the jet and cocoon
[15, 16].

Instabilities in fluid dynamics including magnetic field
play an important role in and drastically change the mor-
phology and stability of the relativistic jet through the in-

ae-mail: jin@cfca.jp,jin.matsumoto@riken.jp
be-mail: ymasada@harbor.kobe-u.ac.jp

teraction between the jet and external medium. The dis-
ruption and deceleration of the relativistic jet may be at-
tributed to the Kelvin-Helmholtz instability driven by ve-
locity shear at the interface between the jet and the sur-
rounding medium [17–19]. Strongly magnetized jet, in
which toroidal magnetic field is dominant is subjected
to the kink mode of current-driven instability [20]. The
rotation-induced Rayleigh–Taylor-type instability in a ro-
tating two-component jet may also impact on the deceler-
ation and decollimation of the jet [21, 22].

Even without the rotation, the relativistic jet poten-
tially becomes unstable to the Rayleigh-Taylor instability
[23]. A radial inertia force, which naturally arises from a
pressure mismatch between the jet and cocoon when the
jet propagates through the ambient medium, drives the ra-
dial oscillating motion of the jet, yielding the reconfine-
ment region inside the jet [7, 24]. This radial inertia force
triggers the Rayleigh-Taylor instability at the jet interface.

When considering the non-axisymmetric evolution of
the jet, the radial oscillation-induced Rayleigh-Taylor in-
stability at the interface of the jet might have a po-
tential impact on the deformation and morphology of
the relativistic jet. In these proceedings, the nonlin-
ear development of the relativistic jet is studied using
three-dimensional (3D) special relativistic hydrodynamic
(SRHD) simulations.

2 Numerical Method
2.1 Basic Equations

We numerically solve the nonlinear development of a rel-
ativistic jet in a cylindrical coordinate system (r, θ, z). As-
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Figure 1. Schematic picture of the jet propagating through the ambient medium (see Figure 1 in Ref. [23]). Top and bottom panels are
side and top views of the jet, respectively.

suming an ideal gas law with a ratio of specific heats
Γ = 4/3, the governing equations we solved are

∂

∂t
(γρ) + ∇ · (γρv) = 0 , (1)

∂

∂t
(γ2ρhv) + ∇ · (γ2ρhvv + Pc2I) = 0 , (2)

∂

∂t
(γ2ρh − P) + ∇ · (γ2ρhv) = 0 , (3)

where γ = 1/
√

1 − (vr/c)2 − (vθ/c)2 − (vz/c)2 is the
Lorentz factor and h = 1 + ΓP/(Γ − 1)ρc2 is the specific
enthalpy. The other symbols have their usual meanings.

A relativistic HLLC scheme is used to solve the SRHD
equations (1)–(3) [25]. The primitive variables are calcu-
lated from the conservative variables following the method
of Ref. [26]. We use a MUSCL-type interpolation method
to attain second-order accuracy in space while the tempo-
ral accuracy obtains second-order by using Runge-Kutta
time integration.

2.2 Numeric Model and Setup

Relativistically hot flow is continuously injected into the
ambient medium from the lower boundary of the computa-
tional domain. We assume the relativistically hot jet with
greater pressure and lower rest-mass energy density than

the ambient medium. The rest-mass energy density and
pressure of the injected jet are chosen as ρjet,0c2 = 0.1 and
Pjet,0 = 1, respectively. Those of the ambient medium are
ρamb,0c2 = 1 and Pamb,0 = 0.1. In addition, the jet ve-
locity of the injected flow from the lower boundary to the
z-direction is relativistic vz = 0.99c, with a Lorentz factor
of γjet,0 ∼ 7. The ambient medium does not move.

The normalization units in length, velocity, time, and
energy density are chosen as the jet radius of the injected
flow at the lower boundary rjet,0, light speed c, light cross-
ing time over the jet radius rjet,0/c, and rest mass energy
density in the ambient medium ρamb,0c2. We use a uni-
formly spaced grid in cylindrical coordinates consisting of
450 × 160 × 1000 zones in r-, θ-, and z-directions. The
computational domain spans 0 ≤ r/rjet,0 ≤ 30, 0 ≤ θ ≤ 2π,
and 0 ≤ z/rjet,0 ≤ 1000. The jet radius of the injected
flow at the lower boundary is resolved by 15 numeric cells.
The 30 uniform logarithmic grids are spaced in the range
of 30 < r/rjet,0 < 100. At the lower boundary hydro-
dynamic variables are fixed inside the jet injection region
(0 < r/rjet,0 < 1), while the boundary conditions are reflec-
tive outside the jet injection region. An outflow (zero gra-
dient) boundary condition is imposed on the outer bound-
ary of the domain. By introducing small-amplitude (1%)
random pressure perturbations to the injected relativistic
flow and the ambient medium, the simulation is initiated.
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Figure 2. Snapshots of the 2D spatial distribution of the density in the 3D calculation for the propagation of the relativistic jet through
the uniform ambient medium when t = 2000. Panel (a) shows the 2D cut in the r − z plane of the density distribution. Panel (b)-(e)
represent 2D cuts in the r − θ (x − y) plane where z = 130, 160, 530, and 870.

3 Results
3.1 3D Jet Propagation

Figure 2 shows snapshots of the two-dimensional (2D)
spatial distribution of the density in the 3D calculation for
the propagation of the relativistically hot jet through the
uniform ambient medium when t = 2000. Panel (a) shows
the 2D cut of rest-mass density along the propagation axis.
Panel (b)-(e) represent 2D transversal cuts of the rest-mass
density where z = 130, 160, 530, and 870, respectively.

The jet propagates through the ambient medium by
pushing the ambient matter in front of the jet, leading to
the formation of a forward shock. A contact discontinuity
separates the jet and surrounding medium. One can find
that the jet-surrounding medium interface becomes unsta-
ble and Rayleigh-Taylor type fingers appear in Figure 2(b).
The amplitude of the corrugated jet-surrounding medium
interface grows at z = 160. The inward pressure-gradient
force acting on the jet-surrounding medium interface in-
duces the Rayleigh-Taylor instability.

The material mixing due to the deformation of the in-
terface between the jet and surrounding medium (see Fig-
ure 1(d) and 1(e)) leads to the jet disruption and the decel-
eration of the jet. The flow velocity of the jet in the region
where z/rjet,0 ∼ 900 is roughly 0.7c although that of the in-
jected relativistic flow at the lower boundary is 0.99c. The
Bernoulli’s constant γh, which is conserved when the fluid
of the relativistic jet changes adiabatically, behind the jet
head also decreases to 10 due to the mixing between light
faster jet and slow heavier external matters. This is only
4 % of that of the injected relativistically hot flow at the
lower boundary.

3.2 Stability of Relativistic Jets

In this section, we investigate the deformation process
of the interface between the jet and surrounding medium
when a radial inertia force acts on the interface through the
3D SRHD simulation. We focus on the temporal evolution
of the interface between a cylindrical jet and the surround-
ing medium within a periodic computational box to the jet
direction.

For our initial conditions, we initially set the cylindri-
cal jet surround by a gas in 3D calculation domain (see
Figure 3(a)). The initial rest mass energy density and pres-
sure in the jet are chosen as ρjet,0c2 = 0.1 and Pjet,0 = 1,
respectively. Those of the external medium are ρext,0c2 = 1
and Pext,0 = 0.1. The jet velocity to the z-direction is rel-
ativistic vjet,0 = 0.99c (the corresponding Lorentz factor is
γjet,0 ∼ 7). The external medium does not move and the
transverse components (vr and vθ) of the velocity are set to
be zero initially in the calculation domain. We have con-
sidered a model with a 1% perturbation in the pressure in
the computational box.

Since the jet is initially overpressured in our model, it
starts to expand adiabatically in the radial direction. The
repeated in situ energy conversion between the thermal
and bulk kinetic energies of the jet induces naturally the
radial inertia force inside the jet and the radial oscillating
motion of the jet [24].

We use a uniformly spaced grid in cylindrical coordi-
nates consisting of 320 × 200 × 320 zones in r-, θ-, and
z-direction. The computational domain spans 0 ≤ r ≤ 10,
0 ≤ θ ≤ 2π, and 0 ≤ z ≤ 10. A uniform resolution of 32
numeric cells over the initial jet radius is adopted. An out-
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Figure 3. Three-dimensional density map of the jet-external
medium system in the half simulation box modeling the radially
oscillating motion of the jet when t = 0, 150, and 200.

flow (zero gradient) boundary condition is imposed on the
outer boundaries of the grid (at r = 10). The calculation
box is periodic along the axial (z) direction.

Figure 3 shows the temporal evolution of the 3D den-
sity map of the jet-external medium system in the half sim-
ulation box when t = 0, 150, and 200. In Figure 3(b), the
inward-propagating reconfinement shock is formed behind
the corrugated contact discontinuity that separates the jet
and the external medium. A finger-like structure is a typ-
ical outcome of the Rayleigh-Taylor instability that is in-
duced by inward pressure gradient force.

The convergence of the inward-propagating recon-
finement shock produces an outward-spreading shock at
the center of the jet. At the timing when the outward
going shock collides with the contact discontinuity, the
Richtmeier-Meshkov instability is secondarily excited be-
tween Rayleigh-Taylor instability fingers.

During the radial oscillating motion of the jet, the
two types of finger structures are amplified and repeat-
edly excited at the contact discontinuity, and finally de-
form the transverse structure of the jet (see Figure 3(c)).
The transverse structure of the jet is dramatically de-
formed by a synergetic growth of the Rayleigh-Taylor
and Richtmeier-Meshkov instabilities once the jet-external
medium interface is corrugated in the case with the
pressure-mismatched jet.

Figure 4 shows the temporal evolution of the volume–
averaged azimuthal velocity |vθ |ave defined by

|vθ |ave =

∫
|vz |>0 |vθ | rdrdθdz
∫
|vz |>0 rdrdθdz

. (4)

In this figure, the synergetic growth of the Rayleigh-Taylor
and Richtmeier-Meshkov instabilities can be confirmed.
The volume-averaged azimuthal velocity |vθ |ave increases
exponentially until t ∼ 80 after t ∼ 25. This is due to the
Rayleigh-Taylor instability that grows at the jet-external
medium interface. At around the time t = 90 when the out-
going shock passes through the contact discontinuity, the
evolution property of the |vθ |ave is dramatically changed,
linearly increasing in time. This is evidence of the exci-
tation of the Richtmeier-Meshkov instability because it is
well-known that the perturbation amplitude grows linearly
with time when the Richtmeier-Meshkov instability devel-
ops [27].

In addition, the condition for the transverse structure
of the jet being maintained is studied by varying the initial
effective inertia ratio between the jet and external medium,
which is defined by

η0 =
γjet,0

2ρjet,0hjet,0

ρext,0hext,0
, (5)

through 2D numerical simulations in the r-θ plane mod-
eling the nonlinear evolution of the jet cross section.
Derivatives of the physical variables in the z-direction are
dropped. See Matsumoto [24] for more detail of the set-
tings of the 2D calculations.

We found that the stability criterion of the jet can be
simply written as η0 ! 1. The jet can maintain its trans-
verse structure as long as the effective inertia of the jet is
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Figure 4. Time evolution of the volume-averaged azimuthal ve-
locity |vθ |ave defined by Equation (4).

smaller than that of the surround medium when excluding
the destabilization effects by the Kelvin-Helmholtz mode
along the jet direction.

The condition for the growth of the radial oscillation-
induced Rayleigh-Taylor instability is the same as that for
the centrifugally driven Rayleigh-Taylor instability found
in Ref. [22]. This simply indicates that a contact disconti-
nuity separating two fluids with η0 > 1 becomes unstable
to the Rayleigh-Taylor instability regardless of the origin
of the driving force.

4 Summary

We investigate the nonlinear stability of the relativistically
hot jet for the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities using 3D relativistic hydrodynamic simula-
tions. The interface between the jet and surrounding
medium is unstable to the Rayleigh-Taylor and Richtmyer-
Meshkov instabilities when the relativistically hot jet prop-
agates through the uniform ambient medium. These insta-
bilities are induced by the radial inertia force that arises
from a pressure mismatch between the jet and surrounding
medium and is the restoring force of the radial jet oscilla-
tion. The cyclic in situ energy conversion between thermal
energy and bulk kinetic energy of the jet is responsible for
the radially oscillating motion of the jet.

The synergetic growth of the radial oscillation-
induced Rayleigh-Taylor and Richtmyer-Meshkov insta-
bilities triggers the deformation of the jet interface and
the material mixing. The mixing between light faster jet
and slow heavier external matters due to these instabilities
leads to the deceleration of the jet.

From complementary two-dimensional simulations of
transverse structure of the jet, we confirms that the stability
criterion for the transverse structure of the jet to the z-axis
is η < 1, where η is the effective inertia ratio of the jet
to the external medium, when the relativistic jet interacts
with the surrounding medium.
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