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Abstract. The prolate-oblate shape phase transition in the the interacting boson model is revisited by adopting

the transitional Hamiltonian with a linear dependence on the control parameter. The analysis of the shape phase

transition in both the large-N limit and finite N case shows that the O(6) symmetry is robust as the critical point

symmetry of the prolate-oblate shape phase transition.

1 Introduction

Shape phase transitions in nuclei have attracted a lot of

interest from both experimental and theoretical perspec-

tives [1, 2, 3]. In theory, the most frequently used model

for studying shape phase transition is the interacting boson

model (IBM) [4], which possesses an overall U(6) sym-

metry with three dynamical symmetries (symmetry lim-

its) corresponding three special nuclear shapes or collec-

tive modes; namely, a spherical vibrator [U(5)], a prolate

rotor [SU(3)], and a γ-soft [O(6)]. Thus, various nuclear

shape phase transitions can be explored within the tran-

sitional patterns among different symmetries in the IBM.

For example, the phase transition from spherical to ax-

ially deformed shape is characterized as the U(5)-SU(3)

transition; the phase transition from spherical to the γ-soft

motion is described by the U(5)-O(6) transition; and the

phase transition from prolate to oblate shape is often de-

scribed by the SU(3)-O(6)-SU(3) transition [5, 6, 7, 8],

in which the prolate and oblate phase are described by

the SU(3) and SU(3) symmetry limit respectively, and the

O(6) symmetry limit emerges exactly at the critical point

since the traditional Hamiltonian is designed to pass the

O(6) limit via a nonlinear dependence on the control para-

meter [5]. Particularly, the recent study [8] shows a new

signature of the first order phase transition at the O(6) limit

of the IBM. In addition, it should be emphasized that the

SU(3) dynamical symmetry can be realized from the tra-

ditional SU(3) dynamical group via a gauge transforma-

tion [9, 10, 11, 12].

In this work, we will investigate the prolate-oblate

shape phase transition in the IBM by considering the

Hamiltonian with a linear dependence on the control pa-

rameter to test the validity of the O(6) dynamics from a

more general phase transitional perspective.
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2 Model

A Hamiltonian in the IBM framework is constructed from

two kinds of boson operators; namely, a s-boson with

Jπ = 0+ and a d-boson with Jπ = 2+. The total boson

number N is taken as the number of valence particle (or

hole) pairs in a nucleus. As mentioned above, the prolate-

oblate shape phase transition can be described with the

SU(3)-O(6)-SU(3) transition in the IBM. To realize such a

transitional dynamics, Jolie et al suggest a simple Hamil-

tonian [5, 6, 7] written as

Ĥχ = −ε[Q̂χ · Q̂χ] , (1)

where

Q̂
χ
µ = (s

† × d̃ + d† × s̃)(2)u + χ(d† × d̃)(2)u (2)

is the quadrupole operator, ε is a scale parameter, and χ is

the control parameter. It can be proven [5, 7] that Eq. (1)

is just the Hamiltonian in the SU(3) limit when χ = −
√
7
2
;

it is in the SU(3) limit when χ =
√
7
2
and it is in the O(6)

limit when χ = 0. For χ ∈ [−
√
7
2
,
√
7
2
], Eq. (1) can then

be used to describe the SU(3)-O(6)-SU(3) transition, and

the O(6) limit as the critical point symmetry of the phase

transition is only a special case of Eq. (1) with χ = 0.

Generally, the form of the Hamiltonian used to de-

scribe the quantum phase transition from phase A to phase

B is often built as [2]

ĤA−B = ε[(1 − x)ĤA + xĤB] , (3)

with ĤA and ĤB describing the phase A and B respectively.

Clearly, it is a linear dependence on the control parameter

in Eq. (3) in contrast to Eq. (1), in which the coupling be-

tween the two phases is in a nonlinear form via the control

parameter χ. In the many-body system, the linear ansatz

is naturally satisfied if the control parameter represents a

weight factor at a certain interaction term of the Hamil-

tonian [2, 13]. In the following, we will revisit the prolate-

oblate shape phase transition in the IBM within a more
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Figure 1. The classical order parameter βe, which is defined

as the optimal value of β, is shown as function of the control

parameter x.
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Figure 2. The potential function in β obtained from (6) at the

critical point x = 0.5 and the potential in the O(6) limit corre-

sponding to (1) with χ = 0.

generally parameterized pattern as given in Eq. (3). The

Hamiltonian is constructed as

Ĥx = −ε[(1− x)[Q̂SU(3) · Q̂SU(3)]+ x[Q̂SU(3) · Q̂SU(3)]] , (4)

where Q̂SU(3)
= (s† × d̃ + d† × s̃)(2)u −

√
7
2
(d† × d̃)(2)u and

Q̂SU(3)
= (s† × d̃ + d† × s̃)(2)u +

√
7
2
(d† × d̃)(2)u . It is clear

that the case of x = 0 corresponds the SU(3) limit (the

prolate phase) and the case of x = 1 represents the SU(3)

limit (the oblate phase). Then the shape phase transition

from prolate to oblate may be described by Eq. (4) with

x ∈ [0, 1]. In this work, the scaled parameters are taken as
ε = 1

4N
for all the Hamiltonian in concrete calculations.

3 Shape phase transition and critical point

dynamics

To investigate the prolate-oblate shape phase transition in

the large-N limit, the coherent state (also called the intrin-

sic state) [4] defined as

|β, γ〉 =
1

√

N!(1 + β2)N
(5)

×[s† + βcosγd†
0
+

1
√
2
βsinγ(d

†
2
+ d
†
−2)]

N |0〉

may be adopted to study the classical limit of the model.

The scaled potential function corresponding to the Hamil-

tonian (4) in the large-N limit is then estimated by

the expectation value in the coherent state, V(x, β, γ) =

〈β, γ,N|Ĥ|β, γ,N〉/N. Thus, the potential in the large-N

limit can be expressed as

V(x, β, γ) = − β2

8(1 + β2)2
[β2 + 4

√
2βcos3γ + 8]

+x

√
2β3cos3γ

(1 + β2)2
. (6)

To identify the order of phase transition, one should min-

imize the potential function (6) by varying β and γ for

each x value. The optimal values are denoted as βe and

γe. Moreover, it is easy to prove that the simple form of

the dependence on γ in (6) yields either γe = 0 for x < 0.5

or γe = π/3 for x > 0.5. The later case can be equivalently

described by substituting γe = 0 and βe = −βe. As a result,
one only needs to consider the potential evolution in β to

identify the order of the phase transition described by (6)

after setting γ = 0. Further, the optimal values βe, which

can be considered as the classical order parameter [14], are

shown in Fig. 2 as function of x. One can clearly see from

Fig. 2 that the prolate phase characterized with βe > 0 is

always dominant for x < 0.5, and the oblate phase repre-

sented by βe > 0 becomes dominant for x > 0.5. Specif-

ically, the order parameter βe may move discontinuously

from a positive value to a negative value when crossing

x = 0.5, which indicates that it is a first order transition

occurring at the critical point x = 0.5 shown in Fig. 2.

It is easy to know from (6) that the potential function at

the critical point x = 0.5 is γ-independent (γ-soft). As we

know, the potential in the O(6) limit is also γ-independent.

Comparing the potentials in the two cases: the potential

function at the critical point x = 0.5 and the potential func-

tion in the O(6) limit are shown in Fig. 2. As seen from

Fig. 2, the global features of the potential at the critical

point are almost the same as those of the O(6) potential

except for that the double wells in the former seem to be

shallower than those in the latter.

Analysis indicates that a first-order shape phase tran-

sition dose occurs in the boson system described by (4)

in the large-N limit with the potential at the critical point

very similar to that in the O(6) limit. However, the boson

number N is always finite in realistic systems. To study

the shape phase transition and the associated critical dy-

namics in finite N case, one needs to numerically solve

the Hamiltonian. In finite N case, the ground state energy
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Figure 3. The ground state energy Eg and qudropole moment

Q(2+
1
) are shown as function of x for N = 5, 10, 20, where the

effective charge is taken as t = 1 eb.

may play the same role as done by the potential function

in the classical limit, of which the derivatives vs x deter-

mines the order of phase transition. On the other hand,

the quadrupole moment Q(2+
1
) of the first 2+ state can be

used to measure the prolate-oblate shape phase transition

in experiments. Q(2+
1
) < 0 indicates a prolate phase and

Q(2+
1
) > 0 represents an oblate phase. Thus, we calculate

the two quantities and show them in Fig. 3 as functions

of x for boson number N = 5, 10, 20. For the electro-

magnetic observables, the electric quadrupole transitional

operator is chosen as

T (E2) = t[(1 − x)Q̂SU(3)
+ xQ̂SU(3)] , (7)

which is consistent with the form of the Hamiltonian (4).

As seen in Fig. 3, Eg presents a non-monotonic variation

as function of x. Specifically, at x = 0.5, the derivative
∂Eg
∂x

may change its sign and tend to be discontinue in the large

N case such N = 20. One can also find from Fig. 3 that

there is a sudden change in the values of the quadropole

moment Q(2+
1
) around xc = 0.5 from the negative to the

positive. The above results indicate the additional evi-

dences of the prolate-oblate phase transitional behavior in

finite systems [8].

Further derivation shows that the Hamiltonian (4) at

the critical point x = 0.5 can be expressed as

Hcri = HO(6) − ε
7

4
(d† × d̃)(2) · (d† × d̃)(2) , (8)

Table 1. The energy ratios R4/2 = E41/E21 , R6/2 = E61/E21 and

R6/0 = E61/E02 as well as the typical B(E2) ratios are shown for

N = 20, where Acri and AO(6) represent the quantities calculated

from Hcri and HO(6) respectively.

R4/2 R6/2 R6/0
B(E2; 41→21)

B(E2; 21→01)

B(E2; 02→21)

B(E2; 21→01)

Acri 2.35 4.04 0.76 1.43 0.00

AO(6) 2.50 4.50 1.00 1.41 0.00

where

HO(6) = −ε Q̂0 · Q̂0 (9)

is the Hamiltonian in the O(6) limit obtained from (1) with

χ = 0 [5]. In (9), Q̂0
u = (s† × d̃ + d† × s̃)(2)u is the genera-

tor of O(6) algebra. It is clear that the second term in (8)

makes the dynamics at the critical point different from the

one in the O(6) limit. To identify the effects of this term on

the O(6) dynamics, we list in Table 1 some typical energy

ratios and B(E2) ratios calculated byHcri andHO(6) respec-

tively. As seen in Table 1, the values of E41/E21 , E61/E21
and E61/E02 for the critical point are all lower than those in

the O(6) limit. Especially, the degeneration of energy lev-

els characterized with R6/0 = 1.00 in the O(6) limit is ev-

idently broken at the critical point. However, the average

deviation between the two cases defined as 1
n

∑

i |
AO(6)−Acri
AO(6)

|
is less than 14% for the three energy ratios. In addition, the

values of B(E2) ratios at the critical point are almost the

same as those in the O(6) limit, which indicates that com-

ponents of the wave-functions in the two cases are very

similar at least for the low-lying states.

4 Conclusion

In conclusion, we have analyzed the prolate-oblate shape

phase transition within the framework of the IBM by using

the Hamiltonian with a linear dependence on the control

parameter in contrast to the original SU(3)-O(6)-SU(3)

transitional pattern [5, 6, 7, 8], in which the adopted

Hamiltonian is designed with a nonlinear dependence on

the control parameter. The results in the large N limit indi-

cate that the prolate-oblate phase transition shown in this

pattern is of first order similar to that shown in the tradi-

tional scheme [5, 6, 7, 8], and the resulting γ-soft critical

dynamical structure in the finite cases is also similar to that

of the O(6) limit.
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