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Abstract. In Fermionic Molecular Dynamics antisymmetrized products of Gaussian wave packets are projected

on angular momentum, linear momentum, and parity. An appropriately chosen set of these states span the

many-body Hilbert space in which the Hamiltonian is diagonalized. The wave packet parameters – position,

momentum, width and spin – are obtained by variation under constraints. The great flexibility of this basis

allows to describe not only shell-model like states but also exotic states like halos, e.g. the two-proton halo in
17Ne, or cluster states as they appear for example in 12C close to the α breakup threshold where the Hoyle state

is located. Even a fully microscopic calculation of the 3He(α,γ)7Be capture reaction is possible and yields an

astrophysical S-factor that compares very well with newer data. As representatives of numerous results these

cases will be discussed in this contribution, some of them not published so far. The Hamiltonian is based on the

realistic Argonne V18 nucleon-nucleon interaction.

1 Fermionic Molecular Dynamics (FMD)

In the FMD approach we employ Gaussian wave packets
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as single-particle basis states. The complex parameters b

encode the mean positions and momenta of the wave pack-

ets and a the widths of the wave packets. The spins can

assume any direction, isospin is ±1 denoting a proton or a

neutron. Intrinsic many-body basis states are Slater deter-

minants
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that reflect deformation or clustering and break the sym-

metries of the Hamiltonian with respect to parity, rotation

and translation. To restore the symmetries the intrinsic ba-

sis states are projected on parity, angular momentum and

total linear momentum
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In a full FMD calculation the many-body Hilbert space

is spanned by a set of N projected intrinsic basis states
{ ∣

∣

∣Q(a); JπMK; P = 0
〉

, a = 1, . . . ,N
}

. By diagonalizing

the Hamiltonian in this set of non-orthogonal basis states

the amplitudes of the various configurations contained in

the many-body eigenstate are determined.

Starting from the realistic Argonne V18 interaction

[1] we derive a phase-shift-equivalent effective low-

momentum interaction using the unitary correlation op-

erator method (UCOM). The basic idea of the UCOM

approach is to explicitly include short-range central and

⋆Supported by the ExtreMe Matter Institute EMMI

tensor correlations by means of a unitary operator [2–4].

No-core shell model calculations show that the two-body

UCOM interaction gives a good description of s- and light

p-shell nuclei [4], indicating that the neglected induced 3-

body forces cancel to a certain extent the missing genuine

3-body forces.

2 Cluster States in 12C

The structure of the second 0+
2

state in 12C, the Hoyle

state, is enjoying renewed and still growing interest in nu-

clear structure research [5–9]. In [10] we investigated its

structure with a model space spanned by angular momen-

tum projected FMD configurations obtained by variation

plus a full set of projected three-α triangular configura-

tions. We found that the Hoyle state is very dilute and ex-

tended, consisting mainly of well distinguished α-clusters.

This is illustrated in the top part of Fig. 1 where we show

the density distribution of those intrinsic FMD basis states

that have the largest overlap with the ground state and the

Hoyle state.

While the leading intrinsic configuration of the ground

state is very compact, and after projection on good angular

momentum, essentially a shell model state filling the p3/2-

shell, the Hoyle state is a quantal superposition of three

α-clusters arranged in a slightly opened triangle configu-

ration, or one may regard it also as a 8Be surrounded by an

α-cluster, see upper part of Fig. 1.

The first 2+ state has the same leading intrinsic con-

figuration as the ground state and may thus be regarded

as the Jπ = 2+ member of a rotational band based on the

ground state. The analogue argument does not hold for the

second 2+ state, it does not quite look like the 2+ member

of a rotational band with the same intrinsic structure as the
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Figure 1. Top: density of intrinsic FMD basis states that have the largest overlaps with the ground (0+
1
) and Hoyle (0+

2
) state, respec-

tively. Note that FMD states are not orthogonal. Bottom: same as top, but for the for 2+
1

and 2+
2

states. The 0+
1

and the 0+
2

states have

different intrinsic structures and thus the recently identified 0+
2

is not just simply a rotating Hoyle state.
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Figure 2. Top: full lines denote two-body densities as function

of distance r between particle pairs of 12C ground state rotational

band members 0+
1
(blue) and 2+

1
state (red); dashed lines show

result when the distribution of pairs where both particles are in-

side the same α-cluster are subtracted [9]. This indicates distance

distributions of pairs, where the two particles are in different α-

clusters. Bottom: same as top, but for the Hoyle state "rotational

band" members 0+
2
(blue) and 2+

2
state (red). See also Fig. 1.

Hoyle state (lower part of Fig. 1). There is still the 8Be

correlation but the third α-cluster is pushed further away

by centrifugal forces and feels attraction to only one of the
8Be α-clusters, thus forming obtuse triangles.

Although intrinsic FMD basis states provide an intu-

itive understanding of the structure of the many-body state,

they are not observable. Therefore we proposed in Ref. [9]

to look at the two-body density

ρ(2)(r) =
〈

Ψ

∣

∣

∣

∑

i< j

δ(r̂i − r̂ j − r)
∣

∣

∣Ψ
〉

, (4)

which gives the probability to find a pair of nucleons at a

distance r. This correlation function can be calculated in

any representation and can thus be used to compare differ-

ent many-body approaches.

Fig. 2 shows that in the 2+
1

state the distances between

nucleons are slightly larger than in the ground state but

otherwise very similar. The lower part of Fig. 2 reveals

much larger particle distances for the 0+
2

(Hoyle) and the

2+
2

state. In the Hoyle state a shoulder appears around 5 fm

indicating the pairs where one particle is in one α-cluster

and the other one in the neighbouring α-cluster, compare

Fig. 1 (5 fm is the typical distance between the centers

of the clusters). The maximum around 2 fm originates

from pairs within the same cluster. The picture becomes

even more transparent when we subtract three times the

pair distributions of a single α-cluster (dashed lines). The

distribution of the dilute Hoyle-like 2+
2

state shows a broad

shoulder between 5 and 10 fm coming from pairs with one

nucleon in the distant α-cluster and one in the 8Be-like

structure, see lower part of Fig. 1.

Both, the recently measured energy of the 2+
2

reso-

nance and its B(E2)-value of the transition to the ground

state [6] compare well with our predictions, see Table 1.

We used these many-body wave functions also to cal-

culate the transition form factor from the ground state to

the Hoyle state and compared it directly to electron scat-

tering data [10, 11]. Our results are similar to those of

[12, 13] where a many-body state representing a gas of

independent α-clusters is assumed. The good agreement

between calculated and measured form factors is a strong

confirmation for a spatially extended cluster structure of

the Hoyle state. The overall agreement with many other

measured data indicates that the FMD description gives a

good insight into the structure of 12C.
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Table 1. Radii and transitions in 12C, data: [6, 14, 15]

Energies [MeV] Exp FMD

E(0+
1
) -92.16 -92.64

E∗(2+
1
) 4.44 5.31

E(3α) -84.89 -83.59

E(0+
2
) − E(3α) 0.38 0.43

E(2+
2
) − E(3α) 2.76(11) 2.77

Radii [fm] Exp FMD

rcharge(0+
1
) 2.47(2) 2.53

r(0+
1
) 2.39

r(2+
1
) 2.50

r(0+
2
) Hoyle state 3.38

r(2+
2
) Hoyle like 4.43

Transitions [fm2] or [e2fm4] Exp FMD

M(E0, 0+
1
→ 0+

2
) 5.4(2) 6.53

B(E2, 2+
1
→ 0+

1
) 7.6(4) 8.69

B(E2, 2+
1
→ 0+

2
) 2.6(4) 3.83

B(E2, 2+
2
→ 0+

1
) 0.73(13) 0.46

Ab initio nuclear lattice calculations [7, 8] seem to sup-

port this structure but due to the large lattice constant the

angles and sites of the three-α triangles can assume only

discrete values in the sampled configurations. For exam-

ple the typical distance between the α-clusters in the Hoyle

state is 2 to 3 lattice spacings. It will be very interesting to

see if future more refined calculations on the nuclear lat-

tice will confirm further the FMD results on the numerous

aspects of the 12C structure.

3 Neon isotopes and two-proton halo

The charge radii of the neon isotopes, which have been

measured in Ref. [16], do not show the usual monotonic

increase with mass number, while the matter radii seem

to increase monotonically from 18Ne on, see Fig. 3. The

FMD model explains this by substantial changes in the

ground-state structure. It attributes the large charge radius

of 17Ne to an extended two-proton halo, as seen in Fig. 4,

with an s2 component of about 40%. The leading intrin-

sic state (upper part of Fig. 4) has a far out reaching part

consisting of two correlated protons, while the neutron dis-

tribution is almost spherical and only weakly polarized by

the outer protons. This is in accord with the simplest pic-

ture that 17Ne consists of an 15O core plus two protons in

either s2 or d2 configurations. Interaction cross sections

[18] and longitudinal momentum distributions [19] sup-

port the halo picture. In 18Ne the situation is similar but in

the same simple picture the core is now the doubly magic
16O, which leads to a significantly smaller s2 component

and hence a smaller charge radius.

The subsequent increase in charge radius for 19Ne is of

different origin. The fact that the experimental 1/2+ and

1/2− states are almost degenerate and the cluster thresh-
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Figure 3. Top: charge radii of Ne isotopes measured by COL-

LAPS and calculated with FMD [16] Bottom: point mass radii,

data from [17]

olds are pretty low, hints already at possible admixtures of

states with cluster structures. Therefore it is not surprising

that 16O - 3He and 15O - 4He cluster configurations admix

in the tail of the wave function.

This admixture of cluster configurations is still very

strong in 20Ne but becomes smaller for heavier Ne isotopes

explaining the dropping charge radii.

4 Radiative capture reaction 3He(α, γ)7Be

Another application of the FMD approach is the calcula-

tion of the 3He(α,γ)7Be radiative capture reaction [26]. As

this reaction plays an important role in the solar proton-

proton chains and determines the production of 7Be and
8B neutrinos [27, 28], it has been studied extensively from

the experimental side in recent years [20–24]. However,

it is still not possible to reach the low energies relevant

for solar burning in experiment. From the theory side

this reaction has been investigated using simple potential

models, where 3He and 4He are treated as point-like par-

ticles interacting via an effective nucleus-nucleus poten-

tial, e.g., [29] or microscopic cluster models, e.g., [30, 31]

where the 7Be bound and scattering states are constructed

from microscopic 3He and 4He clusters interacting via an

effective nucleon-nucleon interaction. Ab-initio calcula-

tions using variational Monte Carlo [32] and no-core shell

model wave functions [33] were used to calculate asymp-

totic normalization coefficients for the bound states but re-

lied on potential models for the scattering phase shifts.

In the FMD calculation we divided the many-body

Hilbert space into an external region, where the scatter-

02021-p.3
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Figure 4. Top: proton and neutron density of leading intrin-

sic FMD state contributing to ground state of 17Ne, bottom:

charge distribution calculated with FMD eigenstate showing a

two-proton halo [16].

ing states are antisymmetrized products of 3He and 4He

clusters in their FMD ground states at various distances,

and an interaction region, where FMD configurations were

obtained by variation after projection on spin-parity 1/2+,

3/2+, 5/2+ and 3/2−, 1/2−, 7/2−, 5/2−. A constraint

on the radius of the intrinsic states was used to vary the

distance between the clusters. Using the microscopic R-

matrix method [34] boundary conditions for bound and

scattering states were implemented by matching to Whit-

taker and Coulomb functions at the channel radius (a =

12 fm).

The capture cross section was calculated from electro-

magnetic transition rates between the microscopic many-

body scattering and bound states. The result for the total

cross section for the 3He(α,γ)7Be capture is shown in form

of the astrophysical S -factor in the upper part of Fig. 5. It

agrees very well with the recent experimental data, both in

absolute normalization and in the energy dependence. The

results for the isospin mirror reaction 3H(α,γ)7Li is shown

in the lower part of Fig. 5. Whereas the energy depen-

dence of the calculated S -factor agrees well with the data,

the absolute cross section is larger then the data by Brune

et al. by about 15%. This is surprising as the FMD results

for the 7Li bound states and the scattering phase shifts are

of similar quality as those for 7Be.
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