
Do light nuclei exhibit “collective“ motions?
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Abstract. The Lorentz integral transform (LIT) method has allowed to perform ab initio
calculations of the response function of 4,6He, and 6,7Li to the isoscalar monopole and
isovector dipole operators in a wide range of energies. In this work we discuss some
of these results and focus in particular on the 4He case, where one has a 0+ resonance
close to the 3+1 thresholds. In fact, in inelastic electron scattering off 4He one finds a
pronounced resonant structure in the isoscalar monopole strength. The knowledge of this
strength as a function of energy makes possible calculations of the corresponding non-
energy weighted and energy-weighted sum rules. Comparing the sum rules with their
contribution from the resonance region hints to the degree of collectivity of the resonant
structure.

1 Introduction

Resonant structures in observables are particularly interesting, since they reveal certain aspects of the
dynamics of a particle system. A celebrated example is the giant dipole resonance, which originates
from a collective relative motion of neutrons against protons. As will be discussed in the following
one may use integral transforms to study such resonance phenomena. In fact, the use of integral
transforms is quite common in physics. Typically they have the following form

Φ(σ) =

∫
dE K(E, σ) R(E) , (1)

where R(E) is an observable depending on the energy E and K(E, σ) is a well defined kernel. The in-
teresting point is that there are cases where it is considerably easier to calculate the integral transform
Φ(σ) than the observable R(E). In such a situation one can determines R(E) from the inversion of the
integral transform. Here the Lorentz integral transform (LIT) L(σ) [1, 2] is considered. The LIT is
defined by a kernel of Lorentzian shape,

K(E, σ) =
1

(E − σR)2 + σ2
I

(2)

with σ = σR + iσI . A calculation of the L(σ) can be performed by solving an equation of the form

(H − σ) Ψ̃ = S , (3)
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where H is the Hamiltonian of the system under consideration and S is an asymptotically vanishing
source term. The solution Ψ̃ is localized and can be determined applying bound-state methods. The
solution leads directly to the LIT:

L(σ) = 〈Ψ̃|Ψ̃〉 . (4)

It is important to note that the energy E can lie far in the many-body continuum and nonetheless one
can carry out rigorous ab initio calculations with the LIT method. In fact a full inclusion of the final
state interaction is guaranteed by the method. In the past such LIT calculations have been performed
for quite a number of electroweak break-up reactions of few-body nuclei (nucleon number up to
A = 7). An overview can be found in the reviews [2, 3]. In figure 1 an example is given for the 3He
inelastic transverse response function RT (q, ω) in inclusive (e, e′) scattering [4]. The LIT calculation
was carried out using as nuclear interaction the AV18 NN potential [5] and the UIX three-nucleon
force (3NF) [6] and considering a non-relativistic nucleon one-body current with additional relativistic
corrections, meson exchange currents, and currents involving the ∆ resonance. The employed bound-
state method consisted in an expansion in correlated hyperspherical harmonics. From the figure it is
evident that there is a very nice agreement between theory and experiment up into the far continuum.
Experimental and theoretical results start to be different with the onset of pion production which,
however, was not included in the theoretical calculation.
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Figure 1. Inelastic transverse response function RT (q, ω) of 3He

2 LIT approach: a simple example

Resonances can have a very narrow width. Therefore it is important to understand if they can be
resolved with the LIT approach. In order to address this issue a simple example is discussed, namely
deuteron photodisintegration in unretarded dipole approximation. In this case the total photoabsorp-
tion cross section is given by

σ(ω) = 4π2 αωR(ω) (5)
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Figure 2. Deuteron photodisintegration in unretarded dipole approximation: LIT result for partial wave 3P1 and
σI = 0.1 MeV

with the dipole response function

R(ω) =

∫
d f |〈 f | θ |0〉|2 δ(ω − E f − E0) , (6)

where E0, E f and |0〉, | f 〉 are ground and final state energies and wave functions, respectively, and
θ =

∑
i zi τi,z/2 is the isovector dipole operator (zi and τi,z are z-components of position vector and

isospin operator of the i-th nucleon). The resulting LIT equation reads

(H − E0 − σ) |Ψ̃〉 = θ |0〉 . (7)

For the deuteron case it is sufficient to make the following ansatz for Ψ̃:

|Ψ̃〉 =

2∑

j=0

∑

l

ψ̃l j(r) |(l, S = 1) j〉 |T = 1〉 , (8)

where r (T = 1) is relative distance (isospin) of the np pair. This then leads to three separate LIT
equations, two uncoupled (3P0, 3P1) and one coupled case (3P2-3F2). They can be easily solved by
direct numerical methods or by expansions of ψ̃l j on a complete set. Since in case of nuclei with
A > 2 we are generally using expansions on hyperspherical harmonics, where the hyperradial part is

expanded on Laguerre polynomials L
m+ 1

2
n times an exponential fall-off, we make here a corresponding

ansatz,

ψ̃l j(r) =

N∑

n=1

cnl rl Ll+ 1
2

n (r/b) exp(−r/2b) , (9)

where cnl is a normalization factor and b a constant. In figures 2-4 LIT results for the 3P1 channel are
shown for various values of N and σI (b = 0.5 fm). One may realize that the results are identical to
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Figure 3. As figure 2 but for σI = 1 MeV
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Figure 4. As figure 2 but for σI = 2.5 MeV

so-called Lanczos responses RLanczos which have the form

RLanczos =

N∑

n=1

fn
(En − σR)2 + σ2

I

(10)
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(for a discussion of LIT method and Lanczos response see [2]). To make a reliable inversion it is
necessary to have a sufficiently converged LIT result for a given σI . For σI = 0.1 MeV (see figure 2)
this is certainly not the case. The number N of Laguerre polynomials had to be increased much more
in order to have a converged transform. For the σI = 1 MeV case (see figure 3) the situation is already
much better. One sees that for N = 50 a converged result is obtained up to about 10 MeV. Thus in
this energy range a resolution of at least 1 MeV is guaranteed, i.e. possible structures with a width
of 1 MeV should be reliably reproduced by the inversion. As figure 4 shows increasing σI to 2.5
MeV leads to a converged LIT in the whole considered energy range with N = 50. From the results
from figures 2-4 it is evident that σI is strongly correlated to the convergence of the expansion. On
the other hand is not surprising that one has to increase N in order to work with a higher resolution.
In contrast to other integral transform, e.g., the Laplace transform, the LIT has the nice feature that
it is a method with a controlled resolution. In fact one is able to check up to which value of σI a
converged result is obtained. This is a very important aspect, since one has a criterion that allows one
to decide whether a certain structure in the inversion result is real or fake. This makes the inversion
very reliable. For a discussion of the inversion procedure itself the reader is referred to [2, 10], but it
should be pointed out, that even resonances with a width as small as 300 keV can be reliably resolved
with the LIT method [11].

3 LIT method and resonances

As discussed in Sect. 2 one must be able to calculate a converged LIT for a sufficiently small σI

in order to resolve the detailed structure of a resonance. In the following we will consider one of
the most recent LIT application, namely the isoscalar monopole resonance of 4He, but before we
illustrate briefly LIT results for the giant dipole resonance (GDR) of light nuclei in unretarded dipole
approximation. All the various calculations we are discussing in this section have been performed
using expansions of nuclear ground and LIT states in hyperspherical harmonics with the effective
interaction approach (EIHH [12]).

3.1 Giant dipole resonance

One of the very first LIT calculations was performed for the GDR of 4He [13]. Simple semi-realistic
NN potential models were used. A rather pronounced GDR was obtained, considerably higher than
the at the time most recent experimental results. Later the pronounced GDR of 4He was confirmed in
a second LIT calculation [14] with a realistic nuclear interaction (AV18 NN potential and UIX 3NF).
Also on the experimental side new measurements were performed which confirm the pronounced
GDR, however the experimental situation is not yet completely settled (see [3, 15]).

LIT calculations for the GDR of 6He, 6Li, and 7Li [16–18] were carried out with semi-realistic
potential models. On the experimental side the 6He and 6Li cases are quite involved, whereas one has
a rather clear picture for the 7Li total photoabsorption cross section and the comparison with the LIT
result is quite satisfying. On the other hand the theoretical cross section for the unstable nucleus of
6He is very interesting. Different from the other cases it exhibits a double peak structure. One finds
a low-lying rather narrow peak and a second rather broad peak beyond 20 MeV. The second peak
should correspond to the GDR, while the low-energy peak might be interpreted as a relative motion
of the two outer neutrons relative to the α-core.

Very recently a LIT calculation for the GDR of 16O was carried out. For results I refer the reader
to S. Bacca’s contribution in the plenary session.
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3.2 Isoscalar monopole resonance of 4He

The 4He inclusive longitudinal response function RL(q, ω) in inelastic (e, e′) scattering shows quite
interesting features. This response functions exhibits a strong influence of the 3NF at low energy
and momentum transfers up to q = 200 MeV/c [19, 20]. The 3NF effect can reach almost 50% and
depends also on the choice of the 3NF itself. A further aspect of the RL of 4He is the presence of an
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Figure 5. 4He isoscalar monopole resonance strength |F(q2)|2

isoscalar monopole resonance, which is located between the two thresholds for the break-up in 3H-p
and 3He-n. The resonance leads to a pronounced cross section peak in inelastic electron scattering as
has been observed in various experiments [21–23]. The width of the resonance was determined to be
about 300 keV.

In [24] the isoscalar monopole part of RL was calculated with the LIT method. Thanks to the fact
that the LIT is a method with controlled resolution and since a converged LIT result could only be
obtained for σI ≥ 5 MeV it was clear beforehand that it was not possible to disentangle the detailed
structure of the resonance. As described in [24] it was nonetheless possible to determine the resonance
strength and the energy dependence of the background strength by a proper inversion procedure. It
should be noted that it is not sufficient to identify as resonance strength the strength fn0 of RLanczos (see
Eq. 10), where En0 is the resonance energy. The reason is that fn0 contains also background strength
(see corresponding discussion in [24]).

The calculation [24] was carried out with two different nuclear interaction (AV18 NN potential
and UIX 3NF, Idaho-N3LO NN potential [25] and an N2LO 3NF in two slightly different parame-
terizations). Both interaction models overestimate the resonance position by about 700 keV. Results
for the strength of the resonance are shown in figure 5. Particularly striking is the strong dependence
of the results on the interaction model, note that both of them represent realistic nuclear forces. In
addition it is very surprising that the experimental strength is considerably smaller than that of the
theory, especially for the chiral potential model. As discussed in detail in [24] it is not easy to un-
derstand what causes the difference of theoretical and experimental results (e.g., the calculated elastic
4He form factors for both interaction models agree well with experiment up to about q2 = 4 fm−2.
In figure 5 also a result from [26] is shown, which agrees much better with the experimental data.
The calculation, however, cannot be considered to be fully realistic. The employed interaction model
consists in the AV8’ NN potential model and a simplistic 3NF, and in addition the excited 0+ state is
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Table 1. Relative contribution of resonance strength |F(q)|2 to m0 and m1 sum rules

q [MeV/c] |F(q)|2/m0 [%] ER |F(q)|2/m1 [%]
50 50 26
100 45 29
150 39 24
200 32 18
300 20 10

considered to be a bound state. All this shows that further investigations are necessary to understand
the underlying physics better.

4 Sum rules and collectivity

The example of the GDR shows that sum rules may serve to judge the collectivity of a specific res-
onance. In fact, all over the nuclear table the GDR exhausts the by far greatest part of the electric
dipole sum rule. This indicates that a collective motion is occurring in the resonance region, since
otherwise one would expect a spread of strength over a larger energy range.

Here we consider the non-energy weighted and the energy weighted sum rules for the 4He isoscalar
monopole strength F IS

0 (q, E),

m0(q) =

∫
dE FIS

0 (q, E) = 〈0| ρ†M(q) ρM(q) |0〉 (11)

m1(q) =

∫
dE E FIS

0 (q, E) = 〈0| ρ†M(q) H ρM(q) |0〉 =
1
2
〈0| [ρ†M(q), [H, ρM(q)]] |0〉 , (12)

where ρM(q) is the isoscalar monopole part of the nuclear charge operator. In the limit q → 0 one
has ρM(q) → q2 ∑

i r2
i and thus one finds m1(q) → Aq2〈r2〉/mN , where mN is the nucleon mass.

Setting 〈r2〉 to the experimental value one has a model independent result for m1(q) in the limit q→ 0.
With a calculation of the resonance strength in the limit q→ 0 one can check how much the resonance
exhausts the sum rule. If the exhaustion is sufficiently large one may speculate about the existence of a
collective motion. However, such a strategy has a drawback. In fact if only a small part of the strength
is located at higher energies it will give a considerable contribution to the energy weighted sum rule
m1. It seems to be better to use the non-energy weighted sum rule m0 to check the collectivity, since
in this case a small high-energy strength would not affect the picture, but on the other hand one has
to be able to determine the model dependent result for m0. Our LIT calculation discussed in Sect. 3.2
easily allows such a determination. Results for the exhaustion of m0 and m1 sum rules are listed in
table 1. One sees that in case of m1 one has a maximal exhaustion of 29% at q = 100 MeV/c, whereas
in case of m0 one reaches a maximal exhaustion of 50% for the q-value of 50 MeV/c. The trend of the
results indicates that the exhaustion could become even larger at q < 50 MeV/c. Particularly, the m0
result leaves certainly space for a speculation of the existence of a collective effect in the 4He isoscalar
monopole resonance. However, further calculations should be performed in order to confirm such a
collectivity. For example, one could study the transition density.

5 Summary

The LIT method has been applied to study resonance phenomena in light nuclei. It has been shown
that the LIT approach is a method with a controlled resolution. This is an important aspect, since one
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has a criterion at disposal to decide to what extent a resonant structure can be reliably obtained in the
inversion.

Various examples for the GDR of light nuclei have been discussed and the GDR of 6He is certainly
the most interesting of these cases. Concerning the 4He isoscalar monopole strength one finds quite
puzzling results. In fact one has rather different results with two different realistic nuclear interac-
tion models, which, in addition overestimate the experimental results considerably. It has also been
discussed that sum rule arguments allow one to speculate that collective effects could play a role for
the dynamics of the 0+ resonance of 4He. Thus I conclude that the study of the physics of the 4He
resonance is very exciting and that many aspects need still to be investigated much better.
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