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Abstract. Excited states in the nuclei38,40,42Si have been studied using in-beamγ-ray
spectroscopy following multi-nucleon removal reactions to investigate the systematics
of excitation energies along theZ=14 isotopic chain. The most probable candidates for
the transition from the yrast 4+ state were tentatively assigned among severalγ lines
newly observed in the present study. The energy ratios between the 2+

1 and 4+1 states were
obtained to be 2.09(5), 2.56(5) and 2.93(5) for38,40,42Si, respectively, indicating a rapid
development of deformation in Si isotopes fromN=24 to, at least,N=28.
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1 Introduction
One of the most predominant properties of nuclei is nuclear shell structure, and the resultant "magic
number" (2, 8, 20, 28, ...) have been provided experimentally by systematic behaviors of physical
properties, such as quadrupole transition strengthsB(E2) and excitation energies of the first 2+ state
Ex(2+1 ) [1]. However, it is now well established that magic numbers are not universal and develop in
the region far from stability line. One of well-known examples is the case of the neutron-rich isotope
32Mg, where the low energyEx(2+1 ) and largeB(E2) indicate shell quenching despite of a conventional
magic numberN=20 [2, 3]. It is a fundamental and open question whether and how the changes of
the major shell closures and magic numbers occur along the nuclear chart.

TheN=28 isotope,42Si, can be regarded as a magic nucleus in the traditional shell model, because
a large energy gap exists atN=28 andZ=14 due to thef7/2 − f5/2 andd5/2 − d3/2 spin-orbit splitting,
respectively. The disappearance of the spherical shell closure together with a large deformation,
however, has been suggested for42Si from the observation of a low energy 2+1 state [4]. Several
experiments have been performed so far [5–10], but no experimental data have been reported on
higher-lying state, such as 4+1 state, which may contribute valuable information on the nature of the
collectivity and/or shell evolution.

2 Experiment
In order to investigate the 2+1 and 4+1 states, we performed in-beamγ-ray spectroscopy of38,40,42Si
with multi-nucleon removal reactions [11]. Experiment was carried out at the RI Beam Factory ac-
celerator complex operated by the RIKEN Nishina Center and CNS, University of Tokyo. The40S
and 44S beams were produced by a projectile fragmentation reaction of a48Ca primary beam with
a typical intensity of around 70 pnA. The primary beam with the energy of 345 MeV/nucleon bom-
barded a 15 mm-thick rotating Be target located at the F0 focal plane of the in-flight RI beam sepa-
rator BigRIPS [12]. The energy and intensity of the secondary40S (44S) beam were approximately
210 MeV/nucleon (210 MeV/nucleon) and around 4×104 particles per second (pps) (6×104 pps), re-
spectively. The secondary beams bombarded a reaction target of 2.54 g/cm2-thick carbon located at
the F8 focal plane in the ZeroDegree Spectrometer [13], which was employed to analyze the reaction
products38Si and40,42Si produced by the multi-nucleon removal reaction of40S and44S, respectively.
De-excitationγ-rays were detected by the DALI2γ-ray spectrometer [14] in coincidence with each
beam and scattered particles.

3 Experimental Results
The Doppler-shift correctedγ-ray energy spectra obtained for38Si, 40Si and42Si are shown in Fig. 1.
As shown in Fig. 1 (c), the 2+1 → 0+g.s. transition in42Si, previously observed at 770(19) keV [4], is
measured here at 742(8) keV with high statistics, while three weakerγ-ray transitions with energies
of 1431(11), 2032(9) and 2357(15) keV are reported for the first time. Usingγ-γ coincidences and
γ-ray relative intensities, the 1431-keV line was deduced to fully feed the 2+

1 state from a higher-lying
excited state at 2173 keV. On the other hand, yield of the 2357-keV transition inγ-γ coincidence
spectrum indicated that it does not, or at least does not fully, populate the 2+

1 state at 742 keV. The
present study indicates no direct evidence for firm spin assignments. However, the 1431-keVγ line
was tentatively assigned as the 4+

1 → 2+1 transition in42Si based on the fact that yrast states are
preferentially populated for isotopes in this mass region via multi-nucleon removal reactions [15–17]
and it directly feeds the 2+1 state, as mentioned above. Similar analytical techniques were applied38Si
and40Si. The 1168(22)- and 1539(16)-keVγ lines, as shown in Fig. 1 (a) and (b), were obtained as
the most probable candidates for the 4+

1 → 2+1 transitions in38Si and40Si, respectively.
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Figure 1. Doppler-shift correctedγ-ray energy spectra obtained in coincidence with (a) C(40S,38Si), (b)
C(44S,40Si) and (c) C(44S,42Si) reactions.

4 Discussion and Summary

The isotopic dependence of the excitation energy of 2+
1 and 4+1 states are shown for34−42Si together

with their ratioR4/2 in Fig. 2, where the systematic properties of Ca isotopes are also given for the
comparison. In the Ca isotopic chain, the relatively high energy 2+

1 state clearly demonstrates the
persistence of the conventional neutron magic number atN=28 as well asN=20. The depressedR4/2

ratios at the both neutron magic numbers are much smaller than 2, showing the spherical nature of
40Ca and48Ca, and supporting the above perception from the 2+

1 state. In contrast, Si isotopes, with
a lack of six protons from Ca isotopes, show different behaviors. The continuous decrease ofEx(2+1 )
indicates the enhancement of nuclear collectivity fromN=20 to N=28. The lowest energy 2+1 state,
742 keV observed in42Si, suggests the disappearance of its magic nature and the deviation from the
conventional shell model scheme. As for the 4+

1 state, theR4/2 ratios for36Si and38Si are close to
the vibrational limit (2.00), whereas it increases to 2.56(5) at40Si, indicating a deviation from the
spherical shape atN=26. In the case of theN=28 isotope42Si, theR4/2 ratio further increases to
2.93(5) despite the neutron magic numberN=28, indicating a well-deformed ground state property
of 42Si. These results on Si isotopes are in good agreement with the prediction of the shell model
calculations using SDPF-MU [18, 19] and SDPF-U-MIX [20, 21] effective interaction, which are
denoted by solid and dashed line in Fig. 2, respectively.

In summary, the excited 4+1 states in38,40,42Si were tentatively assigned in the present study of in-
beamγ-ray spectroscopy following multi-nucleon removal reactions [11]. The results on42Si demon-
strate the magicity loss together with a well-deformed ground state structure, which have been sug-
gested in previous work [4], while theR4/2 systematics indicate a rapid development of deformation
from theN=24 isotope38Si to theN=28 isotope42Si.
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Figure 2. The energy of 2+1 - and 4+1 state (left panel), and its ratio (right panel) of Si isotopes are compared
with Ca isotopes. Filled symbols are results obtained from the present study. Solid and dashed lines show
the prediction of the shell model calculations using SDPF-MU and SDPF-U-MIX interaction for Si isotopes,
respectively. The horizontal lines atR4/2=2.00 (3.33) in right panel indicates the vibrational (rotational) limit.
The vertical lines at the neutron magic number in both panels are intended to guide the eye.
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