Initial state radiation experiment at MAMI

M. Mihovilović1,a, H. Merkel1, A. Weber1, P. Achenbach1, C. Ayerbe Gayoso1, T. Beranek1, J. Beričič4, J. C. Bernauer1, D. Bosnar2, R. Böhm1, L. Correa3, L. Debenjak3, A. Denig1, M. O. Distler1, A. Esser1, H. Fonvieille3, I. Friščič2, M. Gómez1, S. Kegel1, Y. Kohl1, D. G. Middleton1, U. Müller1, L. Nungesser1, J. Pochozdalla1, M. Rohrbeck1, S. Sánchez Majos1, B. S. Schlimme1, M. Schoth1, F. Schulz1, C. Sfienti1, S. Širca5,4, S. Štajner4, M. Thiel1, M. Weinriefer1

1Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, DE-55128 Mainz, Germany
2Department of Physics, University of Zagreb, HR-10002 Zagreb, Croatia
3Clermont Université, CNRS/IN2P3, LPC, BP 10448, F-63000 Clermont-Ferrand, France
4Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
5Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

\textbf{Abstract.} In an attempt to contribute further insight into the discrepancy between the Lamb shift and elastic scattering determinations of the proton charge radius, a new experiment at MAMI is underway, aimed at measuring proton form-factors at very low momentum transfers by using a new technique based on initial state radiation. This paper reports on the conclusions of the pilot measurement performed in 2010, whose main goal was to check the feasibility of the proposed experiment and to recognize and overcome any obstacles before running the full experiment. The modifications to the experimental apparatus are then explained which significantly improved the quality of data collected in the full scale experiment, which was successfully executed in August 2013. At the end first findings of the new experiment are discussed.

1 Introduction

The proton has been scrutinized since the early days of experimental hadronic physics [1]. Its radius has been determined by various electron scattering experiments and many atomic Lamb shift measurements (see Figure 1). Both approaches gave consistent results. Unfortunately their average does not agree with the findings of recent very precise Lamb shift measurements in muonic-hydrogen [2, 3], which report a new value for the proton charge radius which is 7σ away from the previously accepted value. This discrepancy, known as the proton radius puzzle, is controversial and demands further investigation. An ongoing electron scattering experiment at MAMI aims to offer new insight into this matter.

In a typical scattering experiment the radius of a proton is determined indirectly by measuring the cross-section for elastic scattering of electrons on hydrogen [5]. The measured cross-section depends on the electric and magnetic form-factors G_E and G_M, which carry information about the charge and magnetization distribution in the proton and are extracted from the measured data via Rosenbluth separation. The charge radius is extracted from the slope of the electric form-factor at $Q^2 = 0$:

$$\langle r_E^2 \rangle = -6\hbar^2 \frac{d}{dQ^2} G_E(Q^2) \bigg|_{Q^2=0}.$$

ae-mail: maham@kph.uni-mainz.de

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{An overview of the existing proton charge radius results. Results of the scattering experiments are shown with full circles. Empty circles correspond to values determined by reanalysis of the existing data. Full squares represent values obtained from the Lamb shift measurements. The values determined from the muonic hydrogen measurements are colored red [4].}
\end{figure}

4Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20147200017

5© Owned by the authors, published by EDP Sciences, 2014
where Q^2 represents the square of the momentum transfer four-vector. Unfortunately, the data for $Q^2 < 0.005 \text{(GeV}/c)^2$ that would allow for a reliable and precise determination of this slope do not yet exist (See Figure 2). Therefore, an extrapolation of available G_E^p points to $Q^2 \rightarrow 0$ is used to estimate $\langle r_E^2 \rangle$. The extracted value of $\langle r_E^2 \rangle$ is extremely sensitive to the details of this extrapolation, which in turn strongly depends on the precision and accuracy of the values of G_E^p themselves.

$$Q^2 \text{ range of the MAMI experiment}$$

![Graph](image)

Figure 2. The proton charge form factor G_E^p normalized to the standard dipole form factor $G_D = \left(1 - \frac{Q^2}{0.71 \text{(GeV}/c)^2}\right)^{-1}$ as a function of Q^2. The existing data [7–11] are available only for $Q^2 > 0.005 \text{(GeV}/c)^2$. Full black line shows results of the Dispersion analysis [12]. For a reliable determination of proton charge radius, data at $Q^2 \leq 0.005 \text{(GeV}/c)^2$ are needed. Yellow band shows the achievable Q^2 range of the new MAMI experiment.

To avoid such uncertainties, measurements of G_E^p at $Q^2 < 0.005 \text{(GeV}/c)^2$ are needed. Efforts to do this are limited by the minimal accessible Q^2, which is determined by the utilized experimental apparatus. In particular, the three-spectrometer facility at MAMI [6] is on one hand bounded by the minimal scattering angle to which spectrometers can be positioned, while on the other hand it is constrained by the minimal applicable beam energy. To evade these limitations, the presented MAMI experiment tries to exploit information stored inside the radiative tail of the elastic peak in order to reach the form-factors at smaller Q^2.

2 Initial state radiation

The radiative tail of an elastic peak is dominated by contributions of two Bethe-Heitler diagrams [13] shown in Figure 3. The initial state radiation diagram (BH i) describes the process where the incident electron emits a real photon before interacting with the proton. Since the emitted photon carries away part of the incident energy, the momentum transferred to the proton (Q_{Vertex}^2) is decreased. Hence, this process opens the possibility to probe the proton structure at $Q_{\text{Det}}^2 = Q_{\text{Vertex}}^2$ that are smaller than the value fixed by the experimental kinematics. On the other hand, the final state radiation diagram (BH f) corresponds to the reaction where the real photon is emitted only after the interaction with the nucleon. Consequently, Q_{Vertex}^2 at the vertex remains constant, while the detected $Q_{\text{Det}}^2 \leq Q_{\text{Vertex}}^2$ changes. Figure 4 shows the results of a full Monte-Carlo simulation that properly considers inelastic Feynman diagrams. For each of the kinematics the elastic peak and its two radiative tails are clearly visible. The diagonal tail corresponds to initial state radiation, while the horizontal one belongs to final state radiation. In an experi-

3 Monte-Carlo simulation

In a detailed analysis, Feynman diagrams corresponding to Born terms (see Figure 3), where initial and final proton emit real photons, and various vertex corrections should also be considered [14–16]. These additional diagrams camouflage the form factors and make their direct extraction from cross-section measurements impossible. Therefore, an alternative approach is being employed in which data are directly compared to the simulation.

To simulate $\text{He}(e,e')p$ processes the Monte-Carlo simulation Simul++ is utilized, which employs a sophisticated event generator [13] that exactly calculates amplitudes for first order diagrams shown in Figure 3. Only in the next order, effective corrections to the cross-section are used. This gives Simul++ an ability to mimic real data very precisely.
The residual cryogenic depositions were monitored with spectrometer A, which was configured such that both elastic data from hydrogen needed for luminosity determination as well as elastic data from walls and cryogens were within spectrometer’s acceptance. As demonstrated in Figure 7 the spectrometer has enough resolving power to clearly distinguish contributions of nitrogen and oxygen from contributions of other target elements, which allows us a precise determination of the thickness of the cryogenic layer and the corresponding particle energy-loss corrections.

To optimize optics matrices and improve the spectrometer performance for low energy running, a two week beam time was held right before the full experiment, which was dedicated to optics calibration of the spectrometers. Using these data, new optics matrices will be generated, which will then endow spectra with best possible resolutions.

To overcome the problem with the limited resolution of the existing beam current monitors, a secondary-emission monitor (SEM), was installed before the full experiment. It consists of three Havar foils, separated by 5mm. The outer two foils are set to a high voltage ($\approx 10^4$ mbar) inside the scattering chamber. This has significantly improved the measured spectra. See Figure 6 (bottom) for details. The accumulated layer does not affect only particle energy losses, but changes also the detection rates and skews the luminosity measurements.

5 Improvements to the experimental apparatus

To overcome the problem with cryogenic depositions, a higher vacuum inside the scattering chamber had to be ensured. This was achieved by replacing gaskets and Kapton foils in the target windows. Additionally, the foils were enforced with an additional layer of Aramid foil, which allowed us to establish two order of magnitude better vacuum ($\approx 10^{-6}$ mbar). Furthermore, it was observed that the thickness of the deposited layer changes with time (see Figure 6 (top)). The accumulated layer does not affect only particle energy losses, but also the absolute detection rates and skews the luminosity measurements.
Figure 5. Three spectrometer setup at MAMI [6]. Spectrometer A is employed as luminosity monitor, while spectrometer B is used for cross-section measurements. Beam current is measured with non-invasive Förster probe and invasive pA-meter, both located inside the MAMI accelerator. Beam position is determined with two beam position monitors (BPMs) mounted right in front of the target. In the 2013 experiment a secondary electron emission monitor (SEM) was mounted in front of the beam dump as a supplementary beam current monitor.

Figure 7. The distribution of scattered electrons detected by spectrometer A as function of scattering angle θ_e and energy of the detected particle E'. Plot shows upper part of the measured spectrum, where energies of scattered electrons are very close to beam energy of 195 MeV. The almost horizontal bands correspond to heavy elements contained inside the Havar target walls. Electrons scattered from these elements have almost no recoil correction. The slanted bands are contributions of cryogenic nitrogen and oxygen with still observable recoil correction. The 59Co*, 56Fe* and 52Cr denote first excited states of these three elements.
Figure 6. Top: Time evolution of the relative changes in the normalized vertex distribution during the 195 MeV setting of the pilot measurement in 2010. As time progresses (increasing run number), more events (per run) come from target walls and less from the center of the target, which indicates that the thickness of the layer of cryogens around the target cell increases. The arrow indicates a data set taken at a higher beam current, which brought enough power to melt the cryogens. Afterwards more events are again coming from the center and less from the walls. The position of the target walls is indicated by the dashed line. Bottom: Equivalent plot obtained with the 2013 data. Effects of cryogenic depositions are still visible. However, the relative changes inside the target cell are much smaller.

6 Full scale experiment

The full experiment of the proton charge form-factor at MAMI was successfully performed in August 2013. The experimental setup was very similar to the one used in the 2010 pilot experiment (see Section 4), with the modification described in Section 5. Except for some minor issues related to the apparatus at the beginning of the experiment, very stable running conditions were established, which provided us with high quality data. Figure 8 shows the results of on-line analysis together with the first comparison to the simulated spectra.

The measured momentum distributions belonging to different kinematic settings are consistent and together form a continuous radiative tail. A coarse structure observed on top of the distributions is related to a changing detection efficiency and can be corrected by using calibration data. The small elastic peak on the right hand side of the main hydrogen peak corresponds to events coming from the target walls after all acceptance cuts were applied. The presence of such peak indicates the need for better vertex resolution, i.e. improved optics matrices.

In order to obtain a faithful comparison of the data to the simulation, pion production processes were also considered in the Simul++ via MAID model [18]. They contribute up to 10% of the statistics in the lowest energy bins. With the inclusion of these corrections a reasonable agreement between data and simulation, with a relative difference smaller than 10% was achieved already by the on-line analysis. This suggests that Simul++ can satisfactorily mimic real data and that proposed approach can be successfully utilized to extract proton charged form-factor information at $Q^2 \approx 10^{-4}$ (GeV/c)^2.

7 Conclusions and Outlook

The proton radius puzzle is a conspicuous open question of nuclear physics which demands further theoretical and experimental research. Therefore, a new experiment is underway at MAMI, which will provide a new prospect into
this matter, by measuring G_E^0 at very low Q^2. For that purpose a new technique is being considered, which exploits the information hidden inside the radiative tail, to determine G_E^0 for Q^2 as low as 10^{-4} (GeV/c)^2. For the experiment two sets of measurements have been made by using the three spectrometer facility of the A1-Collaboration. A pilot measurement was performed in 2010, which revealed problems mostly related to the magnetic optics of the spectrometers and to the accumulation of residual cryogenic gases around the target walls. All these handicaps were investigated and addressed before the full scale experiment, which ran in August 2013. Since then data analysis is underway and it is foreseen that the first preliminary results will be available in late 2015.

Acknowledgements

This work is supported by the Federal State of Rhineland-Palatinate and by the Deutsche Forschungsgemeinschaft with the Collaborative Research Center 1044.

References