
EPJ Web of Conferences 73, 01001 (2014)
DOI: 10.1051/epjconf/20147301001
C© Owned by the authors, published by EDP Sciences, 2014

SPQR – Spectroscopy: Prospects, Questions & Results

M.R. Penningtona

Theory Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue,
Newport News, VA 23606, USA

Abstract. Tremendous progress has been made in mapping out the spectrum of hadrons
over the past decade with plans to make further advances in the decade ahead. Baryons
and mesons, both expected and unexpected, have been found, the results of precision
experiments often with polarized beams, polarized targets and sometimes polarization of
the final states. All these hadrons generate poles in the complex energy plane that are
consequences of the strong coupling regime of QCD. They reveal how this works.

1. Why spectroscopy?

The spectrum of states of any system is fundamental: reflecting the constituents that make up that system
and the interactions between them. The rich spectrum of hadrons reveals the workings of QCD in the
strong coupling regime. There are two ways to study this. One is wholly theoretical. Knowing the QCD
Lagrangian as we do, one can, in principle, compute its consequences. This turns out to be only just
within our capabilities, and only in simpler cases can definitive results be obtained. The alternative is
to use experiment as our guide, and learn from there. In experiment quarks know how to solve the
field equations of QCD in the strong coupling regime even without the help of a BlueGene computer.
Nevertheless, extracting the spectrum from complex data is often far from straightforward, requiring
close interaction between theory and experiment.

Substantial progress has been made in both the baryon and meson sectors during the past ten years
with increasingly precise experiments, measuring not just differential cross-sections, but all manner of
polarization observables too. Even more results are to come from BESIII, COMPASS, LHCb, MAMI,
ELSA, and Jefferson Lab experiments, with PANDA to follow.

2. The hadron spectrum: Baryons and mesons

Baryons have a special place in the firmament of quark bound states. First it was their multiplet structure
that led to the proposal of the quark model, and the discovery of the triply strange �− that confirmed
this was on the right lines. The inclusion of quarks in the dynamics of QCD made baryons special too.
They most obviously reflect the non-Abelian nature of the theory, since a minimum of three quarks each
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Figure 1. N∗ and �∗ spectra, labeled by their spin and parity as J P along the abscissa, and the real part of
the resonance pole positions along the ordinate, from the Bonn-Gatchina [1] and ANL-Osaka [2] analyses of
experimental data. For the ANL-Osaka (aka EBAC) analysis all the states have 3∗ − 4∗ provenance, while Bonn-
Gatchina also include those with 1∗ − 2∗ ratings, according to the legend shown. Note the tendency of some N∗’s
and �∗’s to appear in parity pairs as their mass increases above 1800 MeV [3].

with different colour charges is required to build a colour neutral hadron with half-integer spin. To learn
about the spectrum of excited baryons we first fired pion beams at proton targets and measured the cross-
section and polarization for the production of �N and ��N final states. Since states in the spectrum
of hadrons have definite quantum numbers, to find these the �N cross-sections and asymmetries are
decomposed into underlying amplitudes with definite spin. However, these only provided a glimpse of
a limited part of the spectrum. A more complete picture is provided by detecting strange, as well as
non-strange, final states (like K�, K�, etc.) [4–6] and by more recent studies with photon beams, in
different polarization states scattering on polarized targets [5]. This has been enabled by a wonderful set
of experiments at ELSA@Bonn, MAMI@Mainz and CLAS6@JLab. The outcome of two Amplitude
Analyses of all these data is shown in Fig. 1. One is a sophisticated, but traditional Amplitude Analysis,
by the Bonn-Gatchina team [1], and the other which attempts to learn about the underlying dynamics
directly is that by the ANL-Osaka group [2]. This uses the Sato-Lee effective Lagrangian [7] as its
basis, and relies on computing the contribution of many Feynman diagrams as the energy increases.
While these approaches satisfy unitarity for two-body channels, three- and higher-body interactions are
more complicated. Consequently, it is the more flexible Bonn-Gatchina analysis that can fit the ��N

final states and determine the spectrum to higher masses. The results in Fig. 1 show that the N∗’s and
�∗’s from these two analyses have much in common, but there are some key differences that need to
be resolved. The measurement of double polarization asymmetries, like the so called G-function with
linearly polarized photons on a longitudinally polarized target open a unique window on to the higher
partial waves [8, 9]. They show that the need for important spin-3 components above 1.55 GeV, seen
in the top right corner of Fig. 1. Many of these new results from Bonn and Mainz are being presented
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at this conference [8, 10]. More data are to come. Beam and target technology are providing detailed
access to this spectrum up to 2.2 GeV.

The aim is not just to assemble hadron states like a stamp collection, but to determine their masses
and widths (given by their poles in the complex energy plane), and their couplings to all the channels
in which they appear (given by the appropriate residues of these poles), and from these to learn about
the composition of these states. By virtue of the uncertainty principle, the proton and neutron inevitably
have a meson cloud, which has detectable effects – much like the Lamb shift in QED. However, for
excited states this cloud is even more tangible. It is real. �N and ��N configurations are an essential
part of the Fock space of the N∗(1440) and all the many excited states shown in Fig. 1. It is through
these components that each decays. The degrees of freedom are not just three quarks, but all the decay
channels too. They are not just objects with a qqq-core of the constituent quark model [11], but they
must have additional qq, or even qgq components. The aim is to determine this structure for each of
the lower lying excited states, and then to understand from this the detailed workings of strong coupling
QCD. Studying in electroproduction experiments how these compositions change as the virtuality of the
probing photon increases, may yet confirm these insights [12].

In the constituent quark model, decays were often treated as some “perturbative” addition, as in
the 3P0 scheme [13]. However, more recently, it has been appreciated that decays actually change
the dynamics of the spectrum [14, 15]. This complexity can bring new states into view, for which the
opening of decay channels are essential, while making others merge into the continuum as they no longer
bind but just fall apart. Such hadronic components are there in modern lattice calculations too [16].
However at present with up and down quarks having 10 times their physical mass, and so pions of
400 MeV, only to a limited extent. As computations advance towards pions of 140 MeV, these hadronic
components are likely to shift the masses of the resulting baryons and change their couplings [17],
hopefully, approaching those that appear in experiment.

That decay channels are essential to hadron states has long been suspected for mesons: the enigmatic
scalars [18] f0(980) and a0(980) clearly have KK channels at the heart of their existence. The discovery
of the new X, Y , Z states in the heavy quark sectors have highlighted this too. The X(3872) is closely
associated to the DD

∗
channel. The charged Zc(4430) clearly must be more complex than simply cc.

New states with hidden strangeness have been found too, like the Y (2175) in the �f0(980) channel.
These all have the feature that S-wave coupling to nearby hadron channels brings binding.

Indeed, it is in the meson sector where some of the previously unconfirmed QCD configurations of
colour singlets are to be found: glueballs and hybrids. A world of pure glue, while theoretically most
interesting, doesn’t exist in the real world. Light glueball configurations inevitably mix with channels
in which qq states appear through their common ��, KK , ��, etc., decay channels. However, hybrids,
states in which glue contributes not just binding but to their quantum numbers, can arise with J P C’s not
possible for simpler qq systems. Such states like 1−+ are called “exotic”, but they are only exotic in the
quark model, not in QCD, where their appearance is to be expected.

The latest lattice calculations [19], shown in Fig. 2, predict multiplets of such states around 2 GeV.
Since these computations are in a world with 400 MeV pions, they are expected to be shifted in the real
world, just as we discussed for baryons. Nevertheless, the calculations are robust enough for a whole
new program of exploration to be the focus of the Hall D program at Jefferson Lab [20]. There polarized
photons scattering on a nucleon target will be studied in many final states: ��N , 3�N , �N , 4�N , 5�N ,
�′N , etc, with a detector designed to have a close to perfect acceptance. To this will be added kaon
identification. With millions of events, the aim is to perform precision partial wave analyses. Hybrids,
and other new states involving light flavours of quark, are unlikely to be narrow, and appear as simple
“bumps”, but only by performing Amplitude Analyses of many channels simultaneously will poles in
the complex energy plane be definitively revealed. This requires close cooperation between theorists
and experimentalists. To facilitate this, the JLab Physics Analysis Center has been set up, led by Adam
Szczepaniak.
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Figure 2. Lattice QCD results for the meson spectrum labeled by their spin and parity as J P C along the abscissa,
and their masses along the ordinate, from the Hadron Spectrum Collaboration [19] with a pion mass of 400 MeV,
showing their flavour structure. The calculations are for states constructed from operators with q, q and g
configurations. The results are grouped into those with natural and unnatural parity allowed by simple qq states.
Those labeled exotic do not appear in the quark model, and in the lattice calculation are dominated by qgq
components.

3. JLab physics analysis center

The states that first populated the Particle Data Tables were those that naturally were those that lived
longest and so appearing as narrow(ish) peaks in the appropriate integrated cross-section: the �, �, �,
N∗(1520), . . . This gave the impression that determining the hadron spectrum was just a matter of bump-
hunting. However, it soon became clear that many states were highly inelastic, appearing in several
channels, often not creating more than a wiggle in any one cross-section. Nevertheless, these correspond
to poles in the complex energy plane, which is the true signature of a state in the spectrum of states.
Others, like the f0(980), couple strongly to a threshold that is just about to open above their notional
mass. Such a state appears as a peak in some reactions and as a dip in others. Nevertheless, these too are
described by a pole in the complex energy plane, regardless of the way they appear in experiment on the
real energy axis. All this makes it clear that one must have the right framework in which to describe the
amplitudes in which resonances appear and the right tools to continue the amplitudes into the complex
energy plane. This framework is provided by Reaction Theory. This requires that the Scattering (or S-)
matrix that describes each reaction satisfies the consequences of causality, relativity and the conservation
of probability. These are the basics of no particular theory, but every theory. These require that the S-
matrix elements possess the correct analyticity, crossing and unitarity properties.

Amplitudes are complex functions. Experiment can sometimes determine both their modulus and
phase, or at least their relative phase. To connect these from one energy to another demands the use of
dispersion relations, or other analytic mapping techniques. Our experimental colleagues, who conceive
and build the detectors and understand their acceptances, write the data acquisition software, connect up
the electronics and a thousand myriad things to turn pulses into cross-sections, need the help of theorists
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Figure 3. Two of the reaction mechanisms at work in �N → 3�N . (a) Represents Regge exchange (R) creating
intermediate states that decay to �� or ��, that might include 1−+ quantum numbers. (b) Deck production of the
same final state. These mechanisms interfere. The consequences of this have to be understood across the kinematic
range of the reaction to determine the production mode of any partial wave.

to provide the translation of these results into the physics of hadrons. Theorists are an integral part of
the analysis team, increasingly embedded within the collaborations. The aim here is not to prove some
particular favourite model, whether based on constituent quarks, or some modelling of interactions in
the bound state equations, or even to validate a lattice calculation, but rather to input essential truths
of scattering theory. Testing models has a role, but that comes later, once definitive results have been
obtained from experiment.

The mission of the JLab Physics Analysis Center is to network with appropriate theorists
and experimentalists in different collaborations to achieve this goal, whether with CLAS12 or
GlueX@JLab, COMPASS@CERN, BESIII@BEPC or PANDA@Fair. The purpose of this networking
for spectroscopy is to share the S-matrix technology that is required and to make this a practical tool.
To this end, various working groups have been set up for the first year to study reaction mechanisms
and final state interactions, in particular. As prompted by the discussions of the a1 years ago, multi-
hadron production is far from simple. To establish that the a1 was indeed a state in the spectrum
required a detailed understanding of how the different mechanisms for three pion production contributed,
Fig. 3; whether the behaviour of the relevant J P C = 1++ 3� partial wave requires a resonance like
that generated by the graph in Fig. 3a, or can it be wholly understood in terms of the Deck effect
of Fig. 3b. Multi-body final state interactions play a key role in searching for new states that may
point to glue as an essential contributor to their J P C quantum numbers. Heavy flavour factories, like
BaBar and Belle are rich sources of information about such decays. This has to be combined with
practical methods for implementing two and three-body unitarity to be used in Amplitude Analyses
of the precision data to come. COMPASS is confronting all these issues [21] and is a key experiment
from which we hope to learn. To meet these demands the JLab Physics Analysis Center is not just
working with experimentalists but establishing close connections with other theory consortia like the
NABIS group [22] and the Haspect project [23]. To make the most of the precision data that modern
experiments deliver, with much more to come, we must have tools of comparable precision to extract
the detailed physics required to understand how the dynamics of QCD, with its properties of colour
confinement and chiral symmetry breaking, really works. That is the challenge.

It is a pleasure to thank the organisers, especially Annalisa D’Angelo, for the invitation to give this talk in such
an auspicious venue. Discussions with Reinhard Beck on the latest experimental results were much appreciated.
This paper has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-
06OR23177.

01001-p.5



EPJ Web of Conferences

References

[1] A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev and U. Thoma, Eur. Phys. J.
A 48, 15 (2012)

[2] H. Kamano, S.X. Nakamura, T.-S.H. Lee and T. Sato, Phys. Rev. C 88, 035209 (2013)
[3] A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, H. Schmieden and U. Thoma, Phys.

Lett. B 711, 162 (2012)
[4] A.V. Sarantsev, Acta Phys. Polon. Supp. 3, 891 (2010); V.D. Burkert, EPJ Web Conf. 37, 01017

(2012)
[5] A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev and U. Thoma, Eur. Phys. J.

A 48, 88 (2012)
[6] R. Schumacher, Strange Photoproduction (Excited States), these Proceedings
[7] A. Matsuyama, T. Sato and T.S. Lee, Phys. Rept. 439, 193 (2007)
[8] B. Krusche, Latest results from meson photoproduction off neutrons, these proceedings
[9] A. Thiel, A.V. Anisovich, D. Bayadilov, B. Bantes, R. Beck, Y. Beloglazov, M. Bichow and S.

Bose et al., Phys. Rev. Lett. 109, 102001 (2012)
[10] e.g., A. Thiel, The Double Polarization Program of Crystal Barrel at ELSA, these Proceedings
[11] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986); S. Capstick and W. Roberts, Phys. Rev.

D 49, 4570 (1994)
[12] I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012); P.L. Cole, V.D. Burkert,

R.W. Gothe, V.I. Mokeev and CLAS Collaboration, Nucl. Phys. Proc. Suppl. 233, 247 (2012);
V.I. Mokeev and I.G. Aznauryan, arXiv:1310.1101 [nucl-ex]

[13] E.S. Ackleh, T. Barnes and E.S. Swanson, Phys. Rev D 54, 6811 (1996)
[14] M.R. Pennington and D.J. Wilson, Phys. Rev. D 76, 077502 (2007)
[15] J. Ferretti, G. Galata and E. Santopinto, arXiV:1302.6857 [hep-ph]
[16] R.G. Edwards, J.J. Dudek, D.G. Richards and S.J. Wallace, Phys. Rev. D 84, 074508 (2011)
[17] M.R. Pennington, Proceedings of LEAP 2013, Uppsala, Sweden, June 2013
[18] M.R. Pennington, AIP Conf. Proc. 1257, 27 (2010) [arXiv:1003.2549 [hep-ph]]
[19] J.J. Dudek, R.G. Edwards, M.J. Peardon, D.G. Richards and C.E. Thomas, Phys. Rev. D 82,

034508 (2010); J.J. Dudek, R.G. Edwards, B. Joo, M.J. Peardon, D.G. Richards and C.E. Thomas,
Phys. Rev. D 83, 111502 (2011)

[20] J.J. Dudek, R. Ent, R. Essig, K.S. Kumar, C. Meyer, R.D. McKeown, Z.E. Meziani and G.A.
Miller, M.R. Pennington, D.G. Richards, L. Weinstein, G. Young and S. Brown, Eur. Phys. J. A
48, 187 (2012)

[21] F. Haas [COMPASS], AIP Conf. Proc. 1257, 293 (2010); F. Nerling [COMPASS], EPJ Web Conf.
37, 01016 and 09025 (2012); T. Schlüter et al. [COMPASS], PoS QNP2012, 074 (2012); S. Paul,
Meson Spectroscopy in the 3� Final States using COMPASS Data, these Proceedings

[22] I. Bigi, I. Bediaga, et al, [Les NABIS Collab.]; B. Kubis, F. Niecknig and S.P. Schneider, Nucl.
Phys. Proc. Suppl. 225-227, 75 (2012)

[23] M. Battaglieri, [HaSpect] https:agenda.infn.it/getFile.py/access?contribid=&&
resid=0&materialId=6561

01001-p.6


	1 Why spectroscopy?
	2 The hadron spectrum: Baryons and mesons
	3 JLab physics analysis center
	
	References

