Co thin film with metastable bcc structure formed on GaAs(111) substrate

Shigeyuki Minakawa 1,a, Daisuke Suzuki 1, Mitsuru Ohtake 1, Nobuyuki Inaba 1, and Masaaki Futamoto 1

1 Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
2 Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510 Yamagata, Japan

Abstract. Co thin films are prepared on GaAs(111) substrates at temperatures ranging from room temperature to 600 °C by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 °C, Co crystals with metastable A2 (bcc) structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc) structure through atomic displacements parallel to the A2\{110\} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1\{111\}<110> || A2\{110\}<001>. When the substrate temperature is higher than 400 °C, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.

1 Introduction

Cobalt (Co) is a 3d ferromagnetic transition metal which has two stable crystallographic phases, A3 (hcp) and A1 (fcc). A2 (bcc) phase is metastable and does not appear in the bulk phase diagram. Recently, application of Co thin film with A2 structure is providing a new possibility a new possibility in the development of magnetic devices. Tri-layer films consisting of A2-Co and oxide (MgO or SrTiO3) layers are reported to show high tunnelling magnetoresistance ratios [1–3]. Understanding of the formation conditions is important in order to apply the A2-Co film for practical applications.

Formation of A2 phase has been recognized for Co films of a few nm thicknesses grown on GaAs substrates of (100) [4–7] and (110) [4, 8, 9] orientations by molecular beam epitaxy. With increasing the thickness, most of the A2-Co crystals tended to transform into more stable A3 or A1 crystals. The film growth behavior and the film structure vary depending on the substrate orientation. However, there are very few reports on preparation of Co films on GaAs(111) substrates. In the present study, Co films are deposited on GaAs(111) substrates by magnetron sputtering, which is suitable for practical applications. The growth process and the detailed resulting film structure are investigated.

2 Experimental procedure

A radio-frequency (RF) magnetron sputtering system equipped with a reflection high-energy electron diffraction (RHEED) facility was used. The base pressures were lower than 4×10^{-7} Pa. Before film formation, GaAs(111) substrates were heated at 600 °C in the chamber to obtain clean surfaces. Figure 1(a-1) shows the RHEED pattern observed for a GaAs substrate after heating. A clear diffraction pattern from a clean B3(111) single-crystal surface shown in the schematic diagram of figure 1(a-2) is observed. A Co target of 3 in diameter was employed. The distance between target and substrate, the Ar gas pressure, and the RF power were respectively fixed at 150 mm, 0.67 Pa, and 54 W, where the deposition rate was 0.02 nm/s. Co films were deposited on the substrates at temperatures ranging between room temperature (RT) and 600 °C. The thickness was varied in a range from 1 to 40 nm.

The surface structure during sputter deposition process was studied by RHEED. The resulting film structure was investigated by 2θ/θ-scan out-of-plane, 2θ/θ-scan in-plane, and pole-figure X-ray diffractions (XRDs) with Cu-Kα radiation ($\lambda = 0.15418$ nm).

3 Results and discussion

Figures 1(b)–(f) show the RHEED patterns and the schematic diagrams of Co films of different thicknesses deposited at RT. A clear RHEED pattern corresponding to a diffraction pattern from A2(111) single-crystal surface with reconstructed structure of p(3×3) [figure 2(d)] is observed for the 1-nm-thick film [figure 1(b-1)]. A Co single-crystal film with metastable A2 structure is obtained in an early stage of film growth on GaAs(111) substrate, similar to the cases of films deposited on GaAs(100) [4–7] and GaAs(111) [4, 8, 9] substrates.
Schematic diagrams of (a-5)–(d-5) are drawn by overlapping (a-2)–(d-2), (a-3)–(d-3), and (a-4)–(d-4), respectively.

The incident electron beam is parallel to GaAs [110].

Fig. 1. (a-1) RHEED patterns observed for a GaAs(111) substrate after heating at 600 ºC. (a-2) Schematic diagram of RHEED pattern simulated for a B3(111) single-crystal surface. (b-1)–(f-1) RHEED patterns and (b-2)–(f-2) the schematic diagrams of Co films of (b) 1, (c) 2, (d) 5, (e) 10, and (f) 40 nm thicknesses deposited on GaAs substrates at RT. The incident electron beam is parallel to GaAs [110].

Fig. 2. (a, b) Crystal structures of (a) A2 and (b) B2. (c)–(f) Schematic diagrams of RHEED patterns simulated for (c, d) A2(111) and (e, f) B2(111) single-crystal surfaces (c, e) without and (d, f) with reconstructed structure of p(3×3). The incident electron beam is parallel to [110]. The schematic diagrams are calculated by using a lattice constant of a = 0.28 nm.

Fig. 3. (a-1)–(d-1) Schematic diagrams showing the A2-A1 phase transformation through atomic displacements parallel to (a-1, b-1) A2(110) and (c-1, d-1) A2(111) planes. The stacking sequence of A1(111) is different between (a-1) and (b-1) and between (c-1) and (d-1). (a-2)–(d-4) Schematic diagrams of RHEED patterns simulated for (a-2)–(a-4) A1(113 7), (b-2)–(b-4) A1(13 7), (c-2)–(c-4) A1(10 1 9), and (d-2)–(d-4) A1(10 1 9) crystals transformed from A2 structure through atomic displacements parallel to (a-2, b-2) A2(110), (a-3, b-3) A2(101), (a-4, b-4) A2(011), (c-2, d-2) A2(110), (c-3, d-3) A2(101), and (c-4, d-4) A2(011) planes. The incident electron beam is parallel to (a-2) [112], (a-3) [578], (a-4) [081], (b-2) [112], (b-3) [081], (b-4) [758], (c-2) [111], (c-3) [456], (c-4) [10 0 1], (d-2) [111], (d-3) [801], or (d-4) [546]. The schematic diagrams are calculated by using a lattice constant of a = 0.35 nm. Schematic diagrams of (a-5)–(d-5) are drawn by overlapping (a-2)–(d-2), (a-3)–(d-3), and (a-4)–(d-4), respectively.
Fig. 4. (a)–(d) Schematic diagrams of pole-figure XRD patterns simulated for (a) A1(1 1 3 7), (b) A1(1 3 1 7), (c) A1(1 0 1 9), and (d) A1(1 9 0 1) crystals transformed from A2 structure. (e) Pole-figure XRD pattern measured for a 40-nm-thick Co film deposited at RT and (f) the schematic diagram. The intensity is shown in a logarithmic scale. The diffraction angle of 2θ is fixed at 44°.

Joint European Magnetic Symposia 2013

epitaxial orientation relationship is determined as

Co[111][110]a2 // GaAs[111][110]a3.

With increasing the thickness up to 2 nm [figure 1(c)], RHEED spots other than the spots from A2 crystal appear. The pattern is analyzed to be an overlap of reflections from three types of A1(1 3 7) and A1(1 1 3 7) crystals. The A2 structure is transforming into more stable A1 structure. The crystallographic orientation relationships between A2 and A1 crystals are determined by RHEED as follows,

A1(111)[110] // A2(110)[001] (type A-1),
A1(111)[110] // A2(101)[010] (type A-2),
A1(111)[110] // A2(110)[001] (type B-1),
A1(111)[110] // A2(101)[010] (type B-2),

These relationships are similar to the Nishiyama-Wasserman orientation relationship [10, 11]. In these configurations, the close-packed planes of A2(110), A2(101), and A2(011), which are 55° inclined from the in-plane, are parallel to the A2(111) close-packed plane, as shown for example in figures 3(a-1) and (b-1). The phase transformation is taking place through atomic displacements parallel to the close-packed planes. The stacking sequence of A1(111) is different between the types of A-1 and B-1, of A-2 and B-2, and of A-3 and B-3. Therefore, the A1 crystals with types A-1, A-2, and A-3 possess a (1 1 3 7) plane parallel to the substrate surface, whereas those with types B-1, B-2, and B-3 possess a (1 3 1 7) plane parallel to the substrate surface. Furthermore, there is a possibility that the transformation is also taking place through atomic displacements parallel to the A2(110), A2(101), and A2(011) close-packed planes which are perpendicular to the substrate surface, as shown in figures 3(c-1) and (d-1). The possible crystallographic orientation relationships are

A1(111)[110] // A2(110)[001] (type C-1),
A1(111)[110] // A2(101)[010] (type C-2),
A1(111)[112] // A2(011)[011] (type C-3),
A1(111)[110] // A2(110)[001] (type D-1),
A1(111)[110] // A2(101)[010] (type D-2),

Figures 3(c-5) and (c-6) show the schematic diagrams of diffraction patterns simulated for A1 crystals transformed in the orientation relationships of types C and D, respectively. However, these diffraction patterns are not clearly recognized in the RHEED pattern observed for the 2-nm-thick Co film [figure 1(c)]. However, the transformations of types C and D may occur mainly within the film, since the RHEED detects a crystallographic information around the film surface. In order to confirm the existence of A1 crystals with types C and D, pole-figure XRD analysis, which is described later, was carried out. As the thickness increases beyond 5 nm [figures 1(d)–(f)], the RHEED spots become broader. The result indicates a possibility that the crystallographic defects like planar faults (stacking faults) are involved. Figures 4(a)–(d) show the schematic diagrams of pole-figure XRD patterns simulated for the transformed A1 crystals with the types A, B, C, and D. Here, the diffraction angle of 2θB is fixed at 44°, where A1 crystals transformed a (1 1 3 7) close-packed plane are recognized around 55°. Furthermore, reflections of six-fold symmetry, which originate from A1 crystals with types C and D, are observed around the tilt angle, α, of 55°. Furthermore, reflections of six-fold symmetry, which originate from A1 crystals with types C and D, are recognized around α = 0°. The result apparently shows that the transformation occurs not only along the directions of A1[110], A1[101], and A1[011] which is 55° canted from the substrate surface but also along the in-plane directions of [110], [101], and [011].

Figure 5(a) shows the RHEED patterns observed for
GaAs(444)

Superlattice spots shown by the white circles in the respective. Clear diffraction patterns involving observed for the Co films deposited at 400 and 600 °C, similar to the case of film formation at RT. The nucleation and the transformation behaviours are A1 crystals transformed from A1 structure. The incident electron beam is parallel to GaAs[110]. The intensity is shown in a linear scale. The small reflections noted as Kβ and WL are due to Cu-Kβ and W-Lα radiations included in the X-ray source, respectively.

Figures 5(b) and (c) show the RHEED patterns and the schematic diagrams of Co films of (a-1)–(c-1) 1 and (a-2)–(c-2) 10 nm thicknesses deposited at (a) 200, (b) 400, and (c) 600 °C. The incident electron beam is parallel to GaAs[110].

Fig. 6. (a) Out-of-plane and (b) in-plane XRD patterns of a Co film of 10 nm thickness deposited on GaAs[111] substrate at 600 °C. The scattering vector of in-plane XRD is parallel to GaAs[110])_.

4 Conclusion
Co thin films are prepared on GaAs(111) substrates by varying the thickness from 1 to 40 nm and the substrate temperature from RT to 600 °C. The growth behavior and the film structure are studied by RHEED and XRD. Co crystals with A2 structure nucleate epitaxially on the substrates at temperatures lower than 200 °C. With increasing the thickness, the A2 structure transforms into more stable A1 structure through atomic displacements parallel to the A2{110} close-packed planes. When the substrate temperature increases beyond 400 °C, Ga atoms diffuse from the substrate into the Co film and a Co-Ga alloy film with B2 ordered structure is formed.

Acknowledgements
A part of this work was supported by JSPS KAKENHI Grant Number 25420294, JST A-STEP Grant Number AS242Z00169M, and Chuo University Grant for Special Research.

References
10. G. Wasserman, Arch. Eisenhuettenwes 16, 647 (1933)