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Mathematical modeling of physico-chemical processes in the
polymerization of multicore cable products

E.V. Ivanova, G.V. Kuznetsov, and P.A. Strizhak
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Abstract. In this article the question of simulation of no stationary process in the
polymerization of multilayer cable product is considered. The model allows predicting time
of full polymerization rubber shell.

Introduction

Processes of curing of cable products assume their transmission from specialized furnaces with a
temperature of heating of 450 ÷ 550 K. It is considered to be achievement on all thickness of an
insulating layer of a cable of demanded [1] extents of polymerization (� ≈ 0.99).

The purpose of this work is research of differences of integrated characteristics of curing of single-
core and multicore cable products.

Problem statement

Numerical modeling is executed for the typical system presented in Fig. 1. It was supposed that the
cable contains some isolated conductors (copper conductor) and the general cover (rubber). Reference
temperature of the product T0 was accepted lower than an air temperature in the heating camera Th.

It was taken into account air gaps near entrance sites (z = 0, R5 < r < R6) and output (z = Z1,
R5 < r < R6) cable product from vulcanizations furnace. There are considered that surrounding air
flows into camera (z = 0, R5 < r < R6) with temperature Tc = T0 and speed wc. Mix of cold and hot
air follows from outlet (z = Z1, R2 < r < R3) with speed wc. There are axisymmetric systems (Fig. 1).

The following assumptions were accepted:

1. Contact between cores and rubber is ideal.
2. Cable has a correctly cylindrical form.
3. There are cables fragment with ideal insulated ends.
4. Thermophysical characteristics core, cover and air independent from temperature.

Mathematical model

The mathematical model of heat and mass transfer can be formulated as a typical time-dependent
differential equations for system “hot air – multicore cable” in cylindrical coordinates [2, 3].
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Figure 1. Scheme for solving the problem area: 1 – metal core, 2 – shell core, 2’ – shell cable, 3 – hot air in furnace.

The heat equation for cores (0 < R < Nr1, Nr2 < R < Nr3, 0 < Z < Nz):
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The energy equation for core insulations (Nr1< R< Nr2, Nr3 < R < Nr4, 0 < Z < Nz):
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The energy equation for cable insulation shell (Nr4 < R < Nr5, 0 < Z < Nz):
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The energy, motion and continuity equations for air in camera (Nr5 < R < Nr7, 0 < Z < Nz):
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Initial (� = 0) conditions: Ti = T0 by 0 < R < Nr1, Nr2 < R < Nr3, 0 < Z < Nz; Tj = T0 by
Nr1 < R < Nr2, Nr3 < R < Nr4, 0 < Z < Nz; T3 = T0 by Nr4 < R < Nr5, 0 < Z < Nz; T4 = Tv by
Nr5 < R < Nr7, 0 < Z < Nz; � = 0, 99 by Nr1 < R < Nr2, Nr3 < R < Nr4, 0 < Z < Nz; � = �0

by Nr4 < R < Nr5, 0 < Z < Nz.
Boundary conditions (0 < � < tp):
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Figure 2. Temperatures field by full polymerization shell of multilayer cable (tp = 774.6 s and � ≈ 0, 99 by
Nr4 < R < Nr5).

Figure 3. Isotherms by full polymerization shell of multilayer cable (tp = 774.6 s and � ≈ 0, 99 by Nr4 < R <
Nr5).

The system of time-dependent differential equations solved by finite difference method [4]. The
difference analogues of differential equations solved by locally one-dimensional method and alternating
direction method [4]. There are applied sweep method with using a four-point implicit scheme for
solving dimensional difference equations [4]. The approximation of boundary conditions for Poisson
equations and vortices equation are performed analogically [5].
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Figure 4. Dependence time of polymerization tp from air temperature in camera Tv: 1 – multicore product, 2 –
single-core product.

Results and discussion

The results (Figs. 2–4) indicate about inexpedient of excerpts normative temperature for different
structure of products. Correct choice of vulcanization mode (Th, wc, tp) will minimize typical times
of process and provide condition of uniform heating (without overheating, melting and surface defects).

There are found, that polymerization time of multicore cable’s rubber cover are exceeds analogic
parameters of single-core product. Our result indicates about accounting internal structure of cable
product in selecting the vulcanization mode. There is need to support more times for multicore cable
(accordingly, less speed of broach) as compared with single-core.

Conclusion

This model heat and mass transfer can use as prognostic to select of typical multicore cable’s
vulcanization mode and corresponding parameters (camera’s temperature, allowable gap dimensions
on in and out of camera, time of heating, speed of broaching).

This work supported by the Ministry of Education and Science Russian Federation (project 2.1321.2014).
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