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Abstract. Observing renewed interest in long-standing (semi-) relativistic descriptions of

two-body bound states, we would like to make a few comments on the eigenvalue problem

posed by the spinless Salpeter equation and, illustrated by the examples of the nonsingular

Woods–Saxon potential and the singular Hulthén potential, recall elementary tools that, in

their quest, practitioners looking for analytic albeit approximate solutions will find useful.

1 Introduction: Spinless Salpeter equation
Recent years have witnessed a rise of attempts to study bound states by (semi-) relativistic equations of

motion, such as the Klein–Gordon equation, the Dirac equation, or (as a straightforward generalization

of the Schrödinger equation) the spinless Salpeter equation, with all its merits and drawbacks (consult,

for instance, Refs. [1, 2] for details), derived by nonrelativistic reduction (cf., for instance, Refs. [3–5])

of the Bethe–Salpeter equation [6, 7]. For two particles of (just for notational simplicity) equal masses,

m, and relative momentum p, interacting via a potential V(x) depending on their relative coordinate, x,
the spinless Salpeter equation may be regarded as the eigenvalue equation of the nonlocal Hamiltonian

H ≡ T (p) + V(x) , T (p) ≡ 2

√
p2 + m2 , (1)

incorporating the relativistic kinetic energy, T (p). In view of the interest noted, we revisit this equation

for central potentials V(x) = V(r), r ≡ |x|, by recalling (and exploiting) a couple of well-known results.
More precisely, in an almost telegraphic style we sketch, in Sect. 2, some issues relevant for relativistic

quantum theory and apply the insights gained, in Sects. 3 and 4, to nonsingular and singular potentials.

2 Approximate solutions: Strict constraints
2.1 Existential question: Maximum number of bound states that can be accommodated

In contrast to the Coulomb potential VC(r) ≡ −κ/r, κ > 0, lots of rather popular potentials (for instance,
the Yukawa or theWoods–Saxon potential) admit only a finite number, N, of bound states: this number

is a crucial characteristic of bound-state problems. For generic (nonrelativistic) Schrödinger operators

HNR ≡ p2

2 μ
+ V(r) , μ > 0 , V(r) ≤ 0 , (2)
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with reduced mass μ, the perhaps most easy-to-evaluate upper bound to N is that one by Bargmann [8]:

N �
I (I + 1)

2
, I ≡ 2 μ

∞∫
0

dr r |V(r)| . (3)

For semirelativisticHamiltonians of the spinless-Salpeter form (1), an upper bound to N is given by [9]

N ≤ C
12 π

∞∫
0

dr r2 [|V(r)| (|V(r)| + 4m)]3/2 , C = 6.074898 (m = 0) ,
C = 14.10759 (m > 0) .

(4)

2.2 Narrowing down solutions: Rigorous bounds on eigenvalues

As a function of p2, T (p) is concave. Thus, H is bounded from above by its Schrödinger limit [10, 11]:

H ≤ 2m +
p2

m
+ V(x) . (5)

The Rayleigh–Ritz variational technique applies to self-adjoint (Hilbert-space) operators, H, bounded
from below, with eigenvalues E0 ≤ E1 ≤ E2 ≤ · · · : The d likewise ordered eigenvalues of H, restricted
to any trial subspace of dimension d of the domain of H, form upper bounds to the lowest d eigenvalues
of H below the onset of its essential spectrum. It is favourable to know one’s preferred basis of this trial

space analytically in both position and momentum spaces. We can achieve this by choosing [12, 13] an

orthonormal basis defined by means of generalized-Laguerre polynomials L(γ)k (x) [14] for parameter γ,
utilizing two variational parameters, μ (with unit mass dimension) and β (which is dimensionless), and

spherical harmonicsY�m(Ω) of angular momentum � and projectionm depending on the solid angleΩ:

ψk,�m(x) ∝ r�+β−1 exp(−μ r) L(2�+2β)k (2 μ r)Y�m(Ω) , (6)

L(γ)k (x) ≡
k∑
t=0

(−1)t
(
k + γ
k − t

)
xt

t!
, k = 0, 1, 2, . . . . (7)

For the lower end of the spectrum of H, the operator inequality T (p) ≥ 2m ≥ 0 implies E0 ≥ infx V(x).

2.3 Boundedness from below: Constraints on potential parameters

As an even positive operator, the kinetic-energy term T (p) is definitely bounded from below. However,

for a potential V(x) that is not bounded from below, the issue of the boundedness from below of the full

Hamiltonian (1) has to be addressed: The operator H might turn out to be bounded from below only for

crucial-potential-parameter values within adequate ranges. For the semirelativistic Coulomb problem,

this question has been nicely answered by Herbst a long time ago [15]. In general, this question may be

discussed by deriving upper bounds to energy levels, in particular, to the ground state, by using the trial

states (6) for quantum numbers k = � = m = 0 and our variational parameter β kept fixed at, say, β = 1:

ψ0,00(x) ∝ exp(−μ r) , ψ̃0,00(p) ∝ (p2 + μ2)−2 . (8)

2.4 Accuracy and reliability of solutions: Master virial theorem

Quality and accuracy [16, 17] of an approximate solution to a bound-state equation in use can be easily

scrutinized by a relativistic generalization [18] of the virial theorem: All eigenstates |χ〉 of operators of
the form T (p)+V(x) satisfy a master equation [19] relating the expectation values of radial derivatives:〈

χ

∣∣∣∣∣ p · ∂T
∂p

(p)
∣∣∣∣∣ χ

〉
=

〈
χ

∣∣∣∣∣ x · ∂V
∂x

(x)
∣∣∣∣∣ χ

〉
. (9)
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2.5 Desperately seeking analytic results: Seductions and pitfalls

Aiming at analytic approximations to the exact solutions of spinless Salpeter equations at (almost) any

price triggers hectic activity [20–26]: Frequently, close encounters with the nonlocality of the operator

H are avoided by expanding T (p) up toO(p4/m4), to deal with the apparently nicer behaving operators

Hp ≡ 2m +
p2

m
− p4

4m3
+ V(x) . (10)

However, the expectation value of such “pseudo-spinless-Salpeter Hamiltonian” Hp over, for example,

the trial function (8), that is, φ(r) ∝ exp(−μ r), reveals that this operator Hp is not bounded from below:

〈
Hp

〉
= 2m +

μ2

m
− 5 μ4

4m3
+ 〈V(x)〉 =⇒ lim

μ→∞
〈
Hp

〉
= −∞ =⇒ E0 ≤ −∞ . (11)

Consequently, all searches for ground states must be doomed to fail. However, a perturbative approach

to p4/4m3, adopted correctly,may save one’s day. An expansion over potential-inspired functions [27]
mitigates the singularity of the Laplacian’s centrifugal term ∝ r−2, but alters the full effective potential.

3 Application to potential regular at the origin: Woods–Saxon problem [28]

TheWoods–Saxon (WS) potential is a rather tame potential, familiar from nuclear physics, determined

by coupling strength V0, potential width R, and surface thickness a, all of them assumed to be real [29]:

V(r) = VWS(r) ≡ − V0

1 + exp
(
r−R
a

) , V0 > 0 , R ≥ 0 , a > 0 . (12)

For definiteness, let’s impose the concepts in Sect. 2, as applicable, to theWS eigenvalue problem [28]

for the set of mass and potential parameter numerical values of Table 1, dubbed “physical” in Ref. [30]:

• The lower limit to the energy spectrum is, clearly, E0 ≥ infr V(r) = V(0) = −67.70296 MeV � −V0.

• The energy interval defined by this bound, V(0) < Ek ≤ 0 (k = 0, 1, 2, . . . ,N), may accommodate for

relativistic and nonrelativistic kinematics, respectively, N ≤ 850 and N ≤ 1201 eigenstates, at most.

• For (semi-) relativistic WS bound states identified by radial and orbital angular momentum quantum

numbers nr and �, Table 2 presents variational upper bounds to their binding energies derived for our
setup μ = 1 GeV, β = 1, and subspace dimension d = 25, and the bounds’ Schrödinger counterparts.

• The system characterized by the parameter values in Table 1 hardly warrants its relativistic treatment

since it is highly nonrelativistic, as the expectation value of p2/m2 over the first trial state (8) reveals:〈
p2

m2

〉
≈ 6 × 10−3 . (13)

Table 1. Numerical parameter values adopted for the semirelativistic WS problem by the treatment of Ref. [30].

Parameter m V0 R a

Numerical value 940.271 MeV 67.70352 MeV 7.6136 fm 0.65 fm
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Table 2. Variational and nonrelativistic upper bounds to semirelativistic WS binding energies (in units of GeV).

nr � Spinless Salpeter equation Schrödinger equation

0 0 −0.06032 −0.06030
1 −0.05309 −0.05305

1 0 −0.04119 −0.04108
1 −0.02967 −0.02946

2 0 −0.01527 −0.01545
1 −0.00233 −0.00362

4 Application to a potential singular at the origin: Hulthén problem

The short-range Hulthén potential is characterized by two parameters, coupling strength v and range b:

V(r) = VH(r) ≡ − v

exp(b r) − 1
, b > 0 , v ≥ 0 . (14)

To facilitate comparability, we phrase our remarks for the parameter values used by Ref. [31] (Table 3):

• From the expectation value of the Hamiltonian (1) with Hulthén potential (14) over the trial state (8)

we learn that its boundedness from below requires the potential parameters to satisfy v/b < 16/(3 π).

• Iff κ ≥ v/b,Hulthén’s potential (14) is bounded from below by any Coulomb potential VC(r) ≡ −κ/r.
Thus, lower bounds to the relativistic Coulomb problem, such as the one given by Herbst [15], apply.

• For a Schrödinger operator (2) with Hulthén potential (14), the eigenvalues for � = 0 states read [32]

En = −
(
2 μ v − n2 b2

)2
8 μ n2 b2

, n = 1, 2, 3, . . . , n2 b2 ≤ 2 μ v . (15)

• Table 4 lists, for � = 0 states, the upper bounds to (semi-) relativistic Hulthén binding energies found
variationally for μ = 1, β = 1, and d = 25, or represented by the analytically given eigenvalues (15).

Table 3. Numerical parameter values adopted for the semirelativistic Hulthén problem in the study of Ref. [31].

Parameter m b v

Numerical value (arbitrary units) 1 0.15 0.11

Table 4. Variational and Schrödinger upper bounds to semirelativistic Hulthén binding energies (arbitrary units).

nr � Spinless Salpeter equation Schrödinger equation

0 0 −0.10577 −0.0850694̇
1 0 −0.0022398 −0.001̇
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5 Summary and conclusions
Even though the spinless Salpeter equation resists to being solved by analytical techniques, a variety of

elementary considerations allows us to draw a pretty clear picture of the solutions to be expected out of

such efforts. Nevertheless, not all solutions offered in the literature do respect the frame of this picture.

References
[1] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A 14, 2309 (1999), arXiv:hep-ph/9812368.

[2] W. Lucha and F. F. Schöberl, Fizika B 8, 193 (1999), arXiv:hep-ph/9812526.

[3] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A 7, 6431 (1992).

[4] W. Lucha and F. F. Schöberl, in Proceedings of the International Conference on Quark Confine-
ment and the Hadron Spectrum, edited by N. Brambilla and G. M. Prosperi (World Scientific,

River Edge, NJ, 1995), p. 100, arXiv:hep-ph/9410221.

[5] W. Lucha and F. F. Schöberl, Recent Res. Dev. Phys. 5, 1423 (2004), arXiv:hep-ph/0408184.

[6] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

[7] E. E. Salpeter, Phys. Rev. 87, 328 (1952).

[8] V. Bargmann, Proc. Natl. Acad. Sci. USA 38, 961 (1952).
[9] I. Daubechies, Commun. Math. Phys. 90, 511 (1983).

[10] W. Lucha, F. F. Schöberl, and D. Gromes, Phys. Rep. 200, 127 (1991).

[11] W. Lucha and F. F. Schöberl, Phys. Rev. A 54, 3790 (1996), arXiv:hep-ph/9603429.

[12] S. Jacobs, M. G. Olsson, and C. Suchyta III, Phys. Rev. D 33, 3338 (1986); 34, 3536(E) (1986).
[13] W. Lucha and F. F. Schöberl, Phys. Rev. A 56, 139 (1997), arXiv:hep-ph/9609322.

[14] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions (Dover, New

York, 1964).

[15] I. W. Herbst, Commun. Math. Phys. 53, 285 (1977); 55, 316 (1977) (addendum).

[16] W. Lucha and F. F. Schöberl, Phys. Rev. A 60, 5091 (1999), arXiv:hep-ph/9904391.

[17] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A 15, 3221 (2000), arXiv:hep-ph/9909451.

[18] W. Lucha and F. F. Schöberl, Phys. Rev. Lett. 64, 2733 (1990).

[19] W. Lucha, Mod. Phys. Lett. A 5, 2473 (1990).

[20] S. M. Ikhdair and R. Sever, Z. Phys. C 56, 155 (1992).

[21] S. M. Ikhdair and R. Sever, Z. Phys. C 58, 153 (1993).

[22] S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 19, 1771 (2004), arXiv:hep-ph/0310295.

[23] S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 20, 6509 (2005), arXiv:hep-ph/0406005.

[24] S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. E 17, 1107 (2008).

[25] S. Hassanabadi, M. Ghominejad, B. H. Yazarloo, S. Zarrinkamar, and H. Hassanabadi, Chin.

Phys. C 37, 083102 (2013).

[26] H. Feizi, M. Hoseininaveh, and A. H. Ranjbar, Int. J. Mod. Phys. E 22, 1350039 (2013).

[27] C. L. Pekeris, Phys. Rev. 45, 98 (1934).

[28] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A 29, 1450057 (2014), arXiv:1401.5970 [hep-

ph].

[29] R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
[30] M. Hamzavi, S. M. Ikhdair, and A. A. Rajabi, Chin. Phys. C 37, 063101 (2013), arXiv:1208.5337

[nucl-th].

[31] S. Zarrinkamar, A. A. Rajabi, H. Hassanabadi, and H. Rahimov, Phys. Scr. 84, 065008 (2011).

[32] S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1994), Vol. I, pp. 175–178.

00049-p.5

QCD@Work 2014




