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Abstract

Are spinodal instabilities the leading mechanism in the fragmenta-
tion of a fermionic system? Numerous experimental indications sug-
gest such a scenario and stimulated much effort in giving a suitable
description, without being finalised in a dedicated transport model.

On the one hand, the bulk character of spinodal behaviour requires
an accurate treatment of the one-body dynamics, in presence of me-
chanical instabilities. On the other hand, pure mean-field implemen-
tations do not apply to situations where instabilities, bifurcations and
chaos are present. The evolution of instabilities should be treated in a
large-amplitude framework requiring fluctuations of Langevin type.

We present new stochastic approaches constructed by requiring a
thorough description of the mean-field response in presence of insta-
bilities. Their particular relevance is an improved description of the
spinodal fragmentation mechanism at the threshold, where the insta-
bility growth is frustrated by the mean-field resilience.

1 Mechanical instabilities in one-body dynamics

The phase-space dynamics of fermionic systems may evolve towards inho-
mogeneous density patterns when mechanical instabilities set in. This is a
general process which characterises Fermi liquids at low densities, involving
in some specific conditions spinodal mechanisms of amplification of the un-
stable modes. In particular, the action of the spinodal process on isoscalar
modes was suggested as a possible channel of fragment formation in heavy-
ion collisions, when the system explores densities which are below nuclear
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saturation [1]. It may as well have some relevance in the physics of compact
stars, when portions of inhomogeneous nuclear matter at sub-saturation
density and at large temperatures are formed [2].

Fermionic systems in presence of instabilities, and especially in condi-
tions which correspond to dissipative heavy-ion collisions (i.e. in proximity
of Fermi energies), can be described by the competition of two processes: the
growth of instabilities and the antagonist effect of the mean field. Therefore,
in order to describe such conditions, the following consideration should be ac-
counted for: while a one-body description of bulk properties is needed, pure
mean field equations do not hold when instabilities set in. Along this direc-
tion, a transport description of the system can be constructed as based on a
one-body Hamiltonian H supplemented by a fluctuating contribution which
adds the unknown N -body correlations. We follow the approach of taking
the Wigner-transform analogue in terms of one-body distribution functions
f(�r, �p, t) (function of time t, space �r and momentum �p coordinates), which
yields the Boltzmann-Langevin equation

ḟ = ∂t f − {H[f ], f} = Ī[f ] + δI[f ] . (1)

The above transport equation gives the evolution of the semiclassical one-
body distribution function f in its own self-consistent mean field as resulting
from two contributions. Ī[f ] is the average hard two-body collision integral
in terms of the one-body distribution function f , related to the mean number
of transitions between phase-space elementary volumes dν. δI[f ] is a Marko-
vian term, acting as a fluctuating force while conserving single-particle ener-
gies. Also δI[f ] is expressed in terms of the one-body distribution function
f , through its correlation, 〈δI(�r, �p, t)δI(�r′, �p′, t′)〉 = 2D(�r, �p;�r′, �p′, t′)δ(t − t′),
which contains a diffusion coefficient D also related to dν [3]. The fluctuat-
ing term δI[f ] acts during the whole temporal evolution of the process and
introduces fluctuations by exploiting N -body correlations.

In order to construct a transport model, we exploit two numerical strate-
gies to solve eq. 1 which have been successfully applied to heavy-ion colli-
sions. Either fluctuations are imposed from an external stochastic force
(related to an external potential Uext) and projected on the density space
so that δI[f ] = ∂�r Uext ∂�p f : this is the Stochastic Mean Field [4] strategy
(SMF). Or, fluctuations are introduced in full phase space from inducing
N−N correlations: in this approach, followed in the Boltzmann-Langevin
One-Body model [5, 6] (BLOB), each single collision event acts on a larger
portion of phase space as compared to SMF (and the transition rate is
scaled accordingly), with the constraint that the fluctuation amplitude is
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determined at equilibrium by an occupancy variance equal to f(1 − f) in a
phase-space cell h3. Correspondingly, the final states of collision events are
adapted to the vacancy profile so that the Pauli principle is never violated.

2 Mean-field response in nuclear matter

The stochastic transport approaches based on the Boltzmann-Langevin
equation which were introduced above have the aim of describing dissipative
heavy-ion collisions. They are expected to let fluctuations develop sponta-
neously and to exhibit the correct growing in amplitude of the unstable
modes as a function of time and thermodynamic conditions. In order to
analyse these features, these models should first of all be tested on nuclear
matter in unstable conditions, so as to compare with analytical solutions of
the dispersion relation for the propagation of density waves in Fermi liquids.

Let us situate the system in a mechanically unstable region of the equa-
tion of state, choosing a temperature T ≈ 3MeV and a mean-density-to-
saturation-density ratio ρ/ρ0 = 0.3 (the details of the interaction are given
in ref. [7]). Such conditions correspond to a negative incompressibility
χ−1 = ρ ∂ρP < 0 and to imaginary solutions of the dispersion relation, char-
acterising a process of amplification of a disturbance in density space [3].
This latter manifests as an undulation in density space of wavelength λ and
wave number k; the instability characteristic time is τ . Fig. 1 presents the
evolution of the growth rate �/τ of a disturbance as a function of the wave
number k for nuclear matter in different situations calculated analytically in
a linear-response approximation for zero temperature and for a finite tem-
perature T = 3MeV. In particular, zero-sound conditions are studied as a
function of the interaction range: this latter is introduced in the dispersion
relation by applying a gaussian smearing factor of the mean-field potential
(in the figure, σ indicates the width in fm). For a zero-range interaction
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Figure 1: Evolution of the growth
rate of a disturbance as a func-
tion of the wave number in dif-
ferent situations. See text.
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(σ=0) a linear behaviour indicates that the more matter is to be relocated
the longer it takes, i.e. the larger is the characteristic time τ , and it tends
therefore to a growth rate equal to zero for large wavelengths (i.e. for k→0).
The introduction of a finite range of the interaction has the consequence that
the growth rate drops to zero in correspondence to a largest wave number;
beyond this value, the small wavelengths (i.e. large k) are suppressed. The
leading disturbance λ′, gives the largest growth rate. Differently from the
analytical calculation which assumes that all k modes are decoupled, in a
transport calculation where fluctuations appear spontaneously, small wave
numbers may combine into large wave numbers: the resulting recombination
of the k modes modifies therefore the analytical distribution in the direction
indicated by the arrows in fig. 1.

The above description of the dispersion relation based on an analytical
solution should correspond to a transport calculation applied to the same
conditions. For this purpose, we prepared a cubic box of edge length l =
39fm with periodic boundary conditions containing 1584 neutrons and 1584
protons (each one represented by 40 test particles), so that ρ/ρ0 = 0.3,
and at a temperature of 3 MeV. Fig. 2 shows the evolution in time of the
corresponding system as described within the BLOBLOB model, which is
the BLOB approach applied to one block with periodic boundary conditions.
In this calculation, the Boltzmann-Langevin term agitates the density profile
over several k waves spontaneously so that, as a function of time, a mottling
pattern appears.

The growth of the amplitude of the corresponding disturbances for differ-
ent wavelengths is studied as a function of time in the left panel of fig. 3; each

Figure 2: BLOBLOB calculation. One block with boundary conditions is shown.
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curve of the figure shows in particular the Fourier transform of the density
variance σ2

k as a function of time for a set of wavelengths which correspond
to a given range of nodes of the corresponding undulation in the periodic
block. The calculations are performed with the BLOBLOB model and with
the SMF model also adapted to the same periodic box and with the same
parameters. Both approaches describe the growth of unstable modes but
the first one develops fluctuations more rapidly. The right panel of fig. 3
shows the corresponding dispersion relation from the BLOBLOB calcula-
tion (constructed from the slope of the curves of lnσ2

k for specific k values
in regions showing the more linear-like behaviour). The dispersion relation
is also calculated in a corresponding one-dimensional approach [8] and it is
compared to the expected analytical behaviour (the band on the analytical
calculation represents the interval of the gaussian smearing of the mean-field
potential which is consistent with the width of the triangular functions used
in the numerical calculation); a close agreement is found between the trans-
port calculation and the analytical expectation and the deviations on the
side of the distributions are explained by the coupling of small wavelengths
into large wavelengths as indicated in fig. 1 by the arrows.

Figure 3: Left. BLOBLOB (thick lines) and SMF (thin lines) calculations: Fourier
transform of density variance as a function of time for disturbances of different
number of nodes n. Right. Dispersion relation from the BLOBLOB calculation,
compared to a calculation in one dimension and to the analytical solution.
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3 Spinodal phenomenology in a finite system

The calculations of the dispersion relation in nuclear matter confirm that the
BLOB approach is reliable in reproducing the correct fluctuation amplitude
in unstable conditions. We can then apply the transport model to a finite
system, where the general phenomenology related to the spinodal region of
the equation of state should de described [9]. Outside of this region, either
the system is not enough excited and diluted, so that a damped dynamics
leads to the formation of a compound nucleus, or the system is very hot
and very diluted, so as to vaporise into clusters. Inside the spinodal region,
fluctuation seeds initiate the process of instability growth. The leading dis-
turbance λ′ is the wavelength with the largest growth rate and it induces
the development of blobs of size A′ ≈ ρ′ (λ′/2)3. If the radial expansion is
sufficiently large, those blobs may separate into fragments of corresponding
size, situated approximately in the region of Neon and Oxygen. On the con-
trary, when the radial expansion is not large enough, the blobs coalesce into
fragments of larger size than A′. Such a scenario is illustrated in fig. 4 for a
bombarding energy which slightly exceeds the threshold between compound
nucleus formation and multifragmentation. In this situation we simulate
a heavy-ion collision collision leading to a spinodal behaviour: at around
100 fm/c the system already presents a mottling pattern; at around 150
fm/c a large number of blobs of comparable size A′ are the signature of the
spinodal process (in the specific event simulated in fig. 4 about ten blobs
of similar size can be counted!); at later times, the spinodal blobs merge

Figure 4: BLOB calculation of a spinodal fragmentation process followed by a
partial coalescence of the spinodal pattern into a smaller number of fragments. For
better visibility, axis orientation is modified for each frame; arrows indicate the
reaction axis.
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together smearing the spinodal signature and forming a smaller number of
intermediate-mass fragments (four fragments in this specific event in fig. 4),
which may even lose their symmetry in size.

4 Conclusions

This work presented the main steps to validate a transport model applied
to a fermionic system in presence of mechanical instabilities. In particu-
lar, the amplitude of the fluctuations are studied as a function of time in
correspondence with the properties of the nuclear interaction. A transport
approach constructed by requiring to satisfy the dispersion relation proves to
be suited for the description of nuclear multifragmentation. The dynamical
approach presented in this work does not require any thermodynamic hy-
pothesis (equilibration for instance), but the characteristic thermodynamic
features of multifragmentation, like the occurrence of a nuclear liquid-gas
phase transition, are obtained as a result of the transport dynamics [5]: this
finding makes the present dynamical description and alternative statistical
approaches for multifragmentation mutually consistent.
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