Mixed-symmetry octupole and hexadecapole excitations in $N=52$ isotones

Andreas Hennig1,8, Mark Spieker1, Volker Werner2,3, Tan Ahn2,4, Vassia Anagnostatou2,5, Nathan Cooper2, Vera Derya1, Michael Elvers1,2, Janis Endres1, Phil Goddard2,5, Andreas Heinz2,6, Richard O. Hughes1,7, Gabriela Ilie2,8, Milena N. Mineva9, Simon G. Pickstone1, Pavel Petkov1,9, Norbert Pietralla3, Desirée Radeck1,2, Tim J. Ross5,7, Deniz Savran10,11, and Andreas Zilges1

1Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
2Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA
3Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
4National Superconducting Cyclotron Laboratory NSCL, Michigan State University, East Lansing, Michigan 48824, USA
5Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
6Fundamental Fysik, Chalmers Tekniska Högskola, SE-41296 Göteborg, Sweden
7University of Richmond, Richmond, Virginia 23173, USA
8National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, RO-77125, Romania
9Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
10ExtreMe Matter Institute EMMI and Research Division, GSI, D-64291 Darmstadt, Germany
11Frankfurt Institute for Advanced Studies FIAS, D-60438 Frankfurt a.M., Germany

e-mail: hennig@ikp.uni-koeln.de

Abstract. In addition to the well-established quadrupole mixed-symmetry states, octupole and hexadecapole excitations with mixed-symmetry character have been recently proposed for the $N = 52$ isotones 92Zr and 94Mo. We performed two inelastic proton-scattering experiments to study this kind of excitations in the heaviest stable $N = 52$ isotope 96Ru. From the combined experimental data of both experiments absolute transition strengths were extracted.

1 Introduction

Isovector excitations of valence-shell nucleons are usually denoted as mixed-symmetry states (MSS) [1]. They are predicted in the proton-neutron version of the Interacting Boson Model (IBM-2) [2–4] and can be distinguished from fully-symmetric states (FSS) by their F-spin quantum number [5]. As an experimental signature for MSS, the IBM-2 predicts strong M_1 transitions to their symmetric counterparts with transition matrix elements in the order of μ_N. The collective structure of low-lying states in near-spherical, vibrational nuclei is dominated by the quadrupole degree of freedom. By now, mixed-symmetry quadrupole excitations in vibrational nuclei are well established as collective features near closed shells [6]. In addition to the quadrupole degree of freedom, mixed-symmetry excitations of octupole and hexadecapole character have been proposed in the $N = 52$ isotones 92Zr and 94Mo [7–9]. The identification is based on remarkably strong M_1 transitions between the lowest-lying 3^- and 4^+ states. Recently, the strong M_1 transition between the lowest-lying 4^+ states in 94Mo was successfully described by including g-boson excitations in IBM-2 calculations [9], suggesting FS and MS one-phonon hexadecapole admixtures in the 4_1^+ and 4_2^+ states, respectively. It is the purpose of the present work to study possible mixed-symmetry octupole and hexadecapole states in the heaviest stable $N = 52$ isotope 96Ru.

2 Experiments

The determination of absolute transition strengths requires the measurement of spins and parities of excited states, γ-decay branching ratios, multipole mixing ratios, and nuclear level lifetimes. For this purpose, two inelastic proton-scattering experiments were performed. In a first experiment, performed at the Wright Nuclear Structure Laboratory (WNSL) at Yale University, USA, a proton beam with an energy of $E_p = 8.4$ MeV impinged on a 106 μm2 enriched 96Ru target, supported by a 12C backing with a thickness of 14 μm2. The scattered protons were detected in coincidence with de-exciting γ-rays using five silicon particle detectors and eight BGO-shielded Clover-type HPGe detectors, respectively. From the acquired $p\gamma$ coincidence data γ-decay branching ratios were extracted, while the additionally acquired $g\gamma$ coincidence data were used to determine spins and multipole mixing ratios by means of a $g\gamma$ angular correlation analysis.

In order to extract nuclear level lifetimes in the fs range, we performed a second proton scattering experiment at the Institute for Nuclear Physics at the Univer-
The low-lying sizeable strengths of M_1 nuclear level lifetime. With the experimentally determined value finally yields the comparison of the calculated Doppler-shift attenuation factor.

Target and stopper materials was modeled by means of the concerning one-phonon mixed-symmetry states in 96Ru absolute transition strengths were calculated. The results from the combined experimental data of both experiments 3 Experimental results

The slowing-down process of the 96Ru recoil nuclei in the measurement \[11\]: Doppler-shift attenuation method (DSAM) \[10\] from the energy of the scattered proton, the identity of the recoil nucleus, as well as its excitation energy can be extracted from the energy of the scattered proton, the γ coincidence yields several advantages for the DSAM measurement \[11\]:

- The angle θ, between the direction of the γ-emission and the direction of motion of the recoil nucleus can be extracted on an event-by-event basis.
- Feeding from higher-lying states is eliminated by gating on the excitation energy.
- Peak centroids can be extracted from proton-gated γ-ray spectra, yielding an increased peak-to-background ratio.

The slowing-down process of the 96Ru recoil nuclei in the target and stopper materials was modeled by means of the Monte-Carlo simulation program DSTOP96 \[12\]. A comparison of the calculated Doppler-shift attenuation factor with the experimentally determined value finally yields the nuclear level lifetime.

3 Experimental results

From the combined experimental data of both experiments absolute transition strengths were calculated. The results concerning one-phonon mixed-symmetry states in 96Ru are shown in Figure 1, pointing out M_1 transitions with sizeable strengths of $0.14(4) \mu_N^2$ and $0.90(18) \mu_N^2$ between the low-lying 3^- and 4^+ states, respectively. Based on their absolute M_1 transition strengths, the $3_{1}^{(-)}$ state at $E_x = 3077$ keV and the 4_{2}^{+} state at $E_x = 2462$ keV are likely candidates to show mixed-symmetry one-phonon octupole and hexadecapole contributions, respectively.

Acknowledgments

This work is supported by the DFG under grant Nos. (ZI-510/4-2) and SFB 634, the U.S. Department of Energy Grant No. DE-FG02-01ER40609, and the BMFT Grant No. 05P12RDFN8. P.P. is grateful for the financial support of the Bulgarian Science Fund under contract DFN-E 01/2. D.S. acknowledges support by the Alliance Program of the Helmholtz Association (HA216/EMMI). D.R. and D.S. acknowledge the German Academic Exchange Service (DAAD) for financial support. S.G.P. and M.S. are supported by the Bonn-Cologne Graduate School of Physics and Astronomy.

References