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Abstract. Viscoplasticity is mostly modelled by the flowstress approach, where the flowstress (Y) is a function of pressure,
temperature, plastic strain and strain rate Y(P,T, ε p, ε̇). For dynamic Viscoplasticity the flowstress approach is used in hydrocodes
together with the radial return algorithm, to determine deviatoric stress components in each computational cell and for each time
step. The flowstress approach assumes that during plastic loading, the flowstress in stress space follows the current stress point
(current Y). Unloading of a computational cell is therefore always elastic. The overstress approach to dynamic viscoplasticity was
used in various versions in the 1950s and early 1960s, before the advent of hydrocodes. By the overstress approach a state point
may move out of the quasistatic flow surface upon loading, and hence the term overstress. When this happens, the state point tends
to fall back (or relax) onto the quasistatic flow surface through plastic flow, and the rate of this relaxation is an increasing function
of the amount of overstress. In the paper we first outline in detail how these two approaches to dynamic viscoplasticity work, and
then show an example for which the overstress approach has an advantage over the flowstress approach. The example has to do
with elastic precursor decay in planar impact, and with the phenomenon of anomalous thermal strengthening, revealed recently
in planar impact tests. The overstress approach has an advantage whenever plastic flow during unloading is of importance.

1. Flowstress and overstress
approaches
Dynamic viscoplastic response of ductile materials is
usually modelled by assuming a constitutive law for the
flowstress (Y):

Y = Y (P, T, ε p, ε̇)

Y 2 = 3
2 si j si j

(1)

where P = pressure, T = temperature, εp = effective plas-
tic strain, ε̇ = effective strain rate, sij = stress deviator.
The initial value of Y denoted by Y0 is called yield stress.
The second equation of (1) is a closed surface in deviatoric
stress space, known as the flow surface. With the flowstress
approach the current stress point is always inside or on the
flow surface.

Most (if not all) hydrocodes use the flowstress
approach. For any computational cell, and for each
time cycle, the new stress deviator is determined by
a two-step algorithm introduced by Wilkins [1], and
known as radial return. Step 1 calculates an intermediate
stress deviator s∗

ij and flowstress Y∗, assuming that the
current deformation rate is fully elastic. For Y∗≤Y, the
deformation is indeed elastic, and sij =s∗

ij. For Y∗>Y, the
new stress deviator is on the intersection of the flow surface
Y and the ray from s∗

ij to the origin:

β = Y
/

Y ∗ ; si j = βs∗
i j . (2)

To evaluate Y we need the new values of ε p and ε̇. These
are not available at this stage, and old values are used
instead. This often introduces noise into the solution. It can
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be shown that for an unchanging flow surface, radial return
is equivalent to the flow rule:

d p
i j = λsi j (3)

where dp
i j is the plastic deformation rate, and λ is a positive

scalar. But when the flowstress changes by Eq. (1), radial
return is not equivalent to Eq. (3). Equation (1) expresses
isotropic hardening/softening. But it can be generalized
to express also kinematic hardening and/or shape change.
This has no effect on the radial return algorithm, except
that in some extreme cases the ray to the origin may not
cross the flow surface. Once the new si j are obtained,
plastic deformation rate follows by:

δ
pe
i j = d p

i j = δi j − δe
i j

δe
i j = si j

/
2G (P, T ) (4)

(
ε̇

p
e f f

)2
= 2

3 d p
i j d

p
i j

where G is the shear modulus, and δi j is the deformation
rate deviator. Finally, the stress deviator is corrected for
rigid body rotation by:

ṡi j = siαωα j + s jαωαi (5)

where ωi j is the spin tensor.
We see that the flowstress approach is simple and

easy to apply, and is therefore used in most if not all
hydrocodes. Accordingly, most viscoplastic constitutive
models have the form of Eq. (1). Also, because
upon loading (deviatoric stress increase) from the flow
surface, the current state becomes the new flow surface,
unloading is always elastic by the flowstress approach. In
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this respect the overstress approach is quite different from
the flowstress approach.

The overstress approach is motivated by Orowan’s
equation, and it distinguishes the quasistatic yield stress
(that sets stationary dislocations into motion) from the
current stress (that maintains the motion of already moving
dislocations). The quasistatic yield stress is:

Yqs = Yqs (P, T ) (6)

and the effective plastic deformation rate is given by:

d p
ef f = d p

ef f

(
σeq − Yqs

)

σeq =
3
2 si j si j

(7)

where σeq−Yqs is the overstress. The plastic deformation
rate components are then given by Eq. (3) where λ is:

λ = 3
2 d p

ef f

/
σeq . (8)

The rates of the deviatoric stress components are then:

δe
i j = δi j − d p

i j

ṡi j = 2G (P, T ) δe
i j + siαωα j + s jαωαi (9)

where the first right hand side term in the second equation
of (9) is an approximation good for low deviatoric elastic
strains.

We see that the overstress approach is expressed in
terms of rate equations. These need to be integrated for
each computational cell and for each time step separately,
which can be done with a standard ODE solver like
Runge-Kutta. Many times a single integration step over a
computational time step is sufficient.

The deviatoric rate equations are coupled to the
equation of state (EOS) both ways. First, the deviatoric part
needs P and T, determined from the EOS. Second, plastic
work is added to the volumetric internal energy, thereby
influencing P, T and V (specific volume). The rate equation
for P is:

E = E(P, V ); Ė = −PV̇ + Ẇ p

Ẇ p = V si j d
p
i j

∴ Ṗ = − P + ∂ E/∂V

∂ E/∂ P
V̇ +

Ẇ p

∂ E/∂ P
(10)

where V̇ during a time step is known from mass
conservation, and T can be determined from the
temperature EOS T(P,V).

Equation (7), which we call the flow function, is the
main equation of the overstress approach. Its meaning is:

– In a dynamic situation the stress point is allowed to
move out of the quasistatic yield surface, hence the
term overstress.

– When this happens, the stress point tends to fall back
(or relax) onto the quasistatic yield surface at a rate that
increases with the amount of overstress.

– The rate of relaxation determines the strain rate
sensitivity of the deformation.

– During plastic flow the stress point is mostly outside
the quasistatic yield surface.

Figure 1. Longitudinal stress history at 1 mm into the target,
calculated with the flowstress approach and a temperature
dependent strain rate coefficient.

Figure 2. Longitudinal stress histories, every 0.5 mm into the
target, calculated with the overstress approach.

– Also, plastic flow may continue upon unloading, and
there is no noise from abrupt changes between elastic
unloading and plastic reloading, as often happens with
the flowstress approach.

We use for the flow function the simplest forms possible:

d p
ef f = A

(
σeq − Yqs

)

d p
ef f = A

(
σeq − Yqs

)α
. (11)

The flow function, which reflects dislocation motion
through the crystal lattice, determines both strain and
strain rate hardening/softening. For a given A, when the
total deformation rate is higher, there is more elastic
deformation rate, and the stress increases (strain rate
hardening). Also, for a given total deformation rate, when
A decreases (with ε

p
eff), elastic strain rate increases (strain

hardening).
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Figure 3. Precursor decay as function of distance from the
calculation of Fig. 2.

In what follows we give an example for which
use of the overstress approach has an advantage over
the flowstress approach. The example is about elastic
precursor wave decay in planar impact and the pheno-
menon of anomalous thermal strengthening.

2. Anomalous thermal strengthening

Planar impact tests on thin metal targets (1 mm or
less), and at different temperatures have been recently
reported in [2]. In these tests the authors focused on the
elastic precursor wave amplitudes, and observed that for
higher temperatures the rate of elastic precursor decay
is slower. Their own interpretation was that dynamic
strength increases with temperature, and accordingly they
referred to the phenomenon as “Anomalous Thermal
Strengthening” (ATS).

Planar impact tests have been used for over 70 years to
study the dynamic response of materials to high pressure
shocks. In such tests a thin plate disc (the projectile) is
accelerated against a thicker plate disc (the target). A
shock, or a structured shock, then propagates through the
target. By monitoring the velocity history of the back
surface of the target on the axis, it is possible to acquire
information on the pressure (EOS) and on the shear stress
(strength) response of the target material. The response of
viscoplastic materials to planar impact has been described
and understood since the 1960s [3,4].

Dynamic response to impact (planar or non-planar) is
usually simulated with a hydrocode (or wavecode), and
as stated above, hydrocodes usually use the flowstress
approach to calculate the shear response. As a result,
hydrocodes are not able to reproduce the phenomenon of
elastic precursor decay in planar impact. We show this
by running a planar impact problem using the flowstress
approach. At the same time we also show that ATS can
be reproduced with the flowstress approach by making the
strain rate term of Eq. (1) depend explicitly on temperature

Figure 4. Longitudinal stress histories at 0.5 mm into the target
for different values of the coefficient A.

(in addition to the usual temperature dependence factor):

Y = YqsYP (P) YT (T ) Yε

(
ε

p
e f f

)
[1 + CT (T ) 	n ε̇]

CT (T ) = CT m + (CT 0 − CT m)
(
Tm − T

/
Tm − T0

)
(12)

where the index m signifies melting. In Fig. 1 we show
stress histories at 1 mm into the target from two such
runs. The target is stainless steel with 100 cells per mm.
The entering shock is 10 GPa. We use Yqs = 0.9 GPa,
G = 77 GPa, CT 0 = 0.01 and CT m = 0.2. The two runs are
with T = 300 K and 1000 K, respectively.

We see from Fig. 1 that the precursor level from the run
with 1000 K is indeed higher. We don’t show it here, but
stress history curves at longer distances into the target look
the same, except that the precursor wave duration is longer,
and precursor decay with distance is not reproduced.

We adapted our hydrocode to use the overstress
approach for the same planar impact problem. We use
Eq. (11) with α = 2.4 and different values of A. In
Fig. 2 we show stress histories every 0.5 mm into the target
and with A = 0.1/GPa/µs. Elastic precursor decay is
clearly seen.

In Fig. 3 we show the precursor decay curve as function
of distance from the run of Fig. 2. In Fig. 4 we show stress
history curves at 0.5 mm into the target for different values
of the coefficient A. For A=A(T) this would be equivalent
to curves of different temperatures. We see that for lower
values of A (higher temperatures) precursor decay is
slower, and precursor stress at a given distance is higher.

3. Summary
The flowstress and overstress approaches to dynamic
viscoplasticity have an entirely different structure and
logic, but produce equivalent results in many cases, as in
monotonic loading. Flowstress is the standard approach
in hydrocodes, and it is always used in conjunction with
the radial return algorithm. By the flowstress approach,
the flow surface in stress space is dynamic. It follows
the equivalent stress upon loading, and unloading is
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always elastic. The overstress approach, on the other hand,
recognizes only a quasistatic flow surface, which the stress
point may move out of upon loading, and hence the term
overstress. When it does, the stress point tends to fall back
onto the quasistatic flow surface at a rate that increases
with overstress. By the overstress approach the rate of
plastic flow may be nonzero upon unloading.

The flowstress and overstress approaches may predict
entirely different results whenever plastic flow during
unloading is of importance. One such situation is elastic
precursor wave decay in planar impact. In chapter 2
we demonstrate this by simulating a planar impact
example with both approaches. We show that by using
the overstress approach we can explain the anomalous

thermal strengthening phenomenon recently obtained in
planar impact tests of thin metal discs heated to high
temperatures.
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